查看原文
其他

嵌入式开发中100%会用的几个宏,建议收藏

小麦大叔 2022-10-21

The following article is from 橙子随记 Author 橙子

链表宏linux内核鸿蒙内核rtos和一些开源代码中用的非常多。链表宏是双向链表的经典实现方式,总代码不超过50行,相当精炼。在一些开源框架中,它的数据结构,就是以链表宏为基础进行搭建(如shttpd,一个开源的轻量级、嵌入式服务器框架)。本篇文章将对llist.h文件中的链表宏进行逐个讲解。

1 源码(llist.h)

llist.h文件的全部源码如下:

#ifndef LLIST_HEADER_INCLUDED
#define LLIST_HEADER_INCLUDED

/*
 * Linked list macros.
 */

struct llhead {
 struct llhead *prev;
 struct llhead *next;
};

#define LL_INIT(N) ((N)->next = (N)->prev = (N))

#define LL_HEAD(H) struct llhead H = { &H, &H }

#define LL_ENTRY(P,T,N) ((T *)((char *)(P) - offsetof(T, N)))

#define LL_ADD(H, N)       \
 do {        \
  ((H)->next)->prev = (N);    \
  (N)->next = ((H)->next);    \
  (N)->prev = (H);     \
  (H)->next = (N);     \
 } while (0)


#define LL_TAIL(H, N)       \
 do {        \
  ((H)->prev)->next = (N);    \
  (N)->prev = ((H)->prev);    \
  (N)->next = (H);     \
  (H)->prev = (N);     \
 } while (0)


#define LL_DEL(N)       \
 do {        \
  ((N)->next)->prev = ((N)->prev);   \
  ((N)->prev)->next = ((N)->next);   \
  LL_INIT(N);      \
 } while (0)


#define LL_EMPTY(N) ((N)->next == (N))

#define LL_FOREACH(H,N) for (N = (H)->next; N != (H); N = (N)->next)

#define LL_FOREACH_SAFE(H,N,T)      \
 for (N = (H)->next, T = (N)->next; N != (H);   \
   N = (T), T = (N)->next)


#endif /* LLIST_HEADER_INCLUDED */

2 注解

llist.h中,所用到的链表是双向链表,其节点结构定义如下。在此节点结构中,其只包含了两个指针域,一个指向直接前驱,一个指向直接后继,没有定义数据域。

struct llhead {
 struct llhead *prev;
 struct llhead *next;
};

2.1 LL_INIT(N)

LL_INIT的定义如下,其作用是将所传入指针N的两个指针域(N)->next(N)->prev都指向N。目的是完成单个节点的初始化工作,如下图示意了该过程。

#define LL_INIT(N) ((N)->next = (N)->prev = (N))

2.2 LL_HEAD(H)

LL_HEAD的定义如下,直接将宏LL_HEAD展开,其意图很明显是定义一个新链表H(H表示为传入宏的参数名),并且将H的两个指针域,都初始化为H地址本身,如下图示意了该过程。

#define LL_HEAD(H) struct llhead H = { &H, &H }

2.3 LL_ENTRY(P,T,N)

LL_ENTRY的定义如下,其依赖于宏offsetof。下面先对宏offsetof进行详细描述,其功能描述为:

C语言的offsetof()宏,是定义在stddef.h。用于求出一个struct或union数据类型的给定成员的size_t类型的字节偏移值(相对于struct或union数据类型的开头)。offsetof()宏有两个参数,分别是结构名与结构内的成员名。——维基百科

#define LL_ENTRY(P,T,N) ((T *)((char *)(P) - offsetof(T, N)))

#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

为了更好的理解宏offsetof,下面按照宏的定义来进行拆解说明。

  • ((TYPE *)0):取整数零并将其强转换为指向TYPE的指针。
  • ((TYPE *)0)->MEMBER):引用指向结构成员MEMBER。
  • &((TYPE *)0)->MEMBER):取出MEMBER的地址。
  • ((size_t) &((TYPE *)0)->MEMBER):将结果转换为适当的数据类型。

由于该结构体是以0地址开头,所以最后该宏返回的结果就是该成员相对于结构体开头的偏移量。有了对宏offsetof的理解,再来看宏LL_ENTRY就比较好理解了。宏LL_ENTRY的功能是,根据结构体变量(T)中的域成员变量(N)的指针(P)来获取指向整个结构体变量的指针,下面来做拆解说明:

  • offsetof(T, N):计算成员N相对于其结构体T开头的偏移量。
  • ((char *)(P):将指针P强转为字符指针类型,保证其做+/-运算时是以字节为单位。
  • (char *)(P) - offsetof(T, N)):P为成员N的指针,减去偏移量,指针到了结构体开头位置。
  • ((T *)((char *)(P)- offsetof(T, N))):将指针强转,得到了整个结构体指针。

LL_ENTRY的作用和linux中的宏container_of作用基本一样,该宏定义如下:

#define container_of(ptr, type, member) ({          \
     const typeof( ((type *)0)->member ) *__mptr = (ptr);    \
     (type *)( (char *)__mptr - offsetof(type,member) );})

2.4 LL_ADD(H, N)

LL_ADD的定义如下,其作用是向双向链表H的头部添加节点N。根据LL_ADD定义的语句顺序,对照着图片分析,会更加清晰。如下图,上面这张图片展示了添加节点N之前的结构,下图展示了添加节点N之后的结构。

#define LL_ADD(H, N)       \
 do {        \
  ((H)->next)->prev = (N);    \
  (N)->next = ((H)->next);    \
  (N)->prev = (H);     \
  (H)->next = (N);     \
 } while (0)

2.5 LL_TAIL(H, N)

LL_TAIL的定义如下,其作用是将节点N添加到双向链表H的尾部。宏LL_TAIL的定义如下,其作用是向双向链表H的头部添加节点N。根据LL_TAIL定义的语句顺序,对照着图片分析,会更加清晰。如下图,上面这张图片展示了添加节点N之前的结构,下图展示了添加节点N之后的结构,可以和LL_ADD的结果进行对照。

#define LL_TAIL(H, N)       \
 do {        \
  ((H)->prev)->next = (N);    \
  (N)->prev = ((H)->prev);    \
  (N)->next = (H);     \
  (H)->prev = (N);     \
 } while (0)

2.6 LL_DEL(N)

LL_DEL的定义如下,其作用是将节点N从双向链表中删除,并且节点N回到初始状态(其指针仅指向自身,不再指向其它地方)。

#define LL_DEL(N)       \
 do {        \
  ((N)->next)->prev = ((N)->prev);   \
  ((N)->prev)->next = ((N)->next);   \
  LL_INIT(N);      \
 } while (0)

2.7 LL_EMPTY(N)

LL_EMPTY的定义如下,其作用是判断链表N是否为空链表,返回布尔值false/true。如果节点的直接后继next指向其自身,就认为其为空节点。

#define LL_EMPTY(N) ((N)->next == (N))

2.8 LL_FOREACH(H,N)

LL_FOREACH的定义如下,其作用是在双向链表H中,循环遍历出节点。

#define LL_FOREACH(H,N) for (N = (H)->next; N != (H); N = (N)->next)

2.9 LL_FOREACH_SAFE(H,N,T)

LL_FOREACH_SAFE的定义如下,其作用是在双向链表H中,循环遍历出节点N,因为其有提前存储N的下一个节点T。即使N节点被清理掉,也不影响其下一个节点的遍历,所以该宏一般用来做循环清除双向链表中节点的操作,而宏LL_FOREACH仅用来遍历双向链表。

#define LL_FOREACH_SAFE(H,N,T)      \
 for (N = (H)->next, T = (N)->next; N != (H);   \
   N = (T), T = (N)->next)

3 使用案例

有人可能会有疑惑,这个双向链表定义如此简单,只有前驱和后继两个指针,甚至连数据域都没有,那实际该如何使用呢?这个可能就是这组双向链表宏的精妙之处。其在使用过程中并不需要数据域,而是通过指针将结构体串联成双向链表,并且通过该指针借助 LL_ENTRY宏 能还原出该结构体指针,从而达到操作具体结构体的目的。

如下例子虽然不是完整能跑的程序,但是足够说明双向链表宏的关键用法。程序源码如下,现对照代码,描述双向链表宏的大致使用步骤:

  1. 定义一个结构体,结构体中必须包含struct llhead link;双向链表节点,这是后续能通过遍历双向链表节点,还原出该结构体指针的关键;
  2. 通过LL_HEAD(listeners);,创建一个双向链表的头为listeners
  3. 在具体逻辑中,肯定有地方通过LL_TAIL(&listeners, &l->link);或者LL_ADD(H, N),向双向链表的头listeners添加节点;
  4. 在需要操作1.所定义的结构体时,通过LL_FOREACH(&listeners, lp)遍历出节点指针;
  5. 这是最精华的一步,通过4.遍历出来的节点,传入宏LL_ENTRY(lp, struct listener, link);中,还原出节点所在的结构体指针,根据逻辑的需要对结构体进行具体相应的操作;
  6. 通过宏LL_FOREACH_SAFE来遍历双向链表,LL_DEL来删除遍历出来的节点,达到清空链表的作用。
struct llhead {
 struct llhead *prev;
 struct llhead *next;
};

struct listener {
 struct llhead link;
 struct shttpd_ctx *ctx;  /* Context that socket belongs */
 int  sock;  /* Listening socket  */
 int  is_ssl;  /* Should be SSL-ed  */
};

static LL_HEAD(listeners)/* List of listening sockets */

struct listener *l;
LL_TAIL(&listeners, &l->link);

struct llhead *lp;
LL_FOREACH(&listeners, lp) {
 l = LL_ENTRY(lp, struct listener, link);
 FD_SET(l->sock, &read_set);
 if (l->sock > max_fd)
  max_fd = l->sock;
 DBG(("FD_SET(%d) (listening)", l->sock));
}

struct llhead  *lp, *tmp;
LL_FOREACH_SAFE(&listeners, lp, tmp) {
 l = LL_ENTRY(lp, struct listener, link);
 (void) closesocket(l->sock);
 LL_DEL(&l->link);
 free(l);
}

4 总结

  • LL_ENTRY(P,T,N)宏是这一组宏的核心,其在具体使用中的功能可以概括为,通过传入链表节点P,还原出节点所在结构体的指针,进而能对结构体进行相应操作
  • 这一组双向链表宏其实形成的是一个循环双向链表;
  • 这些宏最初是极客写出的,后来在Linux内核中被推广使用。



往期推荐



嵌入式真的没前途吗?

搭建了一个轻量级实验室,真香

别踩坑了,细数嵌入式板卡设计的常见问题

什么是霍尔效应?

搞硬件,很难?

这个开源项目真赞,介绍一个大功率伺服驱动器


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存