25岁任985博导、教授!重庆大学再次走红!
博导太年轻是种怎样的体验?近日,学术圈被重庆大学25岁的年轻博导占据榜首,这已经不是重庆大学第一次“上热榜”!
01
90后博导:陶璐琪
保研直博到清华,毕业后任职985高校
“来重大,继续做科研吧!” 2018年夏天,陶璐琪收到师兄、重庆大学光电学院教授陈显平发来的讯息。彼时,重庆大学电气工程学院成立了协同创新中心,急需招聘科研人才。从事新型微纳材料与微纳传感技术等研究的陶璐琪被特聘到重庆大学,其研究也带到了重庆大学。
他曾在国际重要学术期刊和国际会议论文集上发表论文50余篇,包括顶级刊物Nature Communications、ACS Nano、Advanced Functional Materials、Biosensors & Bioelectronics、Applied Physics Letters、微电子领域顶级国际会议IEDM等,获得授权发明专利3项。
在项目方面,他承担国家自然科学基金、国家重点研发计划子课题、重庆市自然科学基金等项目。在科研成果方面,陶璐琪的一项研究成果引起关注:通过石墨烯,可帮助聋哑人士“说话”,实现与人交流!
为了丰富理论储备,陶璐琪在一年内学习了1200余篇文献,但是做实验的过程仍然十分艰难。
提出的智能石墨烯人工喉工作荣获科技导报评选的2017年“中国十大重大技术进展”以及首届中国国际智能产业博览会十大“黑科技”创新产品。
90后博导陶璐琪认为“我们要把那些对社会有影响力的事放在第一位,不要去做浮躁的科研”。写真正高质量的文章,做出真正有影响力的科研成果才是最实在的事。
02
95后博导:冯磊
引进人才年龄最小,应届博士首聘为博导
2021年1月,出生于1995年4月的冯磊,被重庆大学计算机学院,直接作为弘深青年学者人才引进,并聘任为博导、教授,其主要研究方向为机器学习、数据挖掘、人工智能。
冯磊入职时仅25岁,这是重大计算机学院目前年龄最小的引进人才,也是该学院有史以来首次直接给应届博士毕业生正高/博导岗位。
图片来源:福布斯
实现学院顶会论文零的突破
入职半年,冯磊撰写的论文《Pointwise Binary Classification with Pairwise Confidence Comparisons》在第38届国际机器学习会议(CCF A类)上发表。这是机器学习领域公认的顶级国际学术会议,在学术界享有极高的声誉,这也是重庆大学计算机学院首次以第一单位在该会议上发表学术论文,实现了零的突破。
图片来源:重庆大学官网
该论文的第一作者与通讯作者均为冯磊,合作者来自日本东京大学、日本理化学研究所先进智能研究中心、新加坡南洋理工大学、澳洲昆士兰大学、中国香港浸会大学等著名高校或研究机构。
冯磊学术成果代表性论文:
向下滑动查看全部论文
[20] Tao Liang, Guosheng Lin, Lei Feng, Yan Zhang, Fengmao Lv. Attention is not Enough: Mitigating the Distribution Discrepancy in Asynchronous Multimodal Sequence Fusion. Proceedings of the International Conference on Computer Vision (ICCV'21), to appear, 2021. (CCF A)[19] Lei Feng, Senlin Shu, Yuzhou Cao, Lue Tao, Hongxin Wei, Tao Xiang, Bo An, Gang Niu. Multiple-Instance Learning from Similar and Dissimilar Bags. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'21), to appear, 2021. (CCF A)[18] Lei Feng, Senlin Shu, Nan Lu, Bo Han, Xin Geng, Gang Niu, Bo An, Masashi Sugiyama. Pointwise Binary Classification with Pairwise Confidence Comparisons. Proceedings of the 38th International Conference on Machine Learning (ICML'21), to appear, 2021. (CCF A)[17] Yuzhou Cao, Lei Feng, Xitian Xu, Bo An, Gang Niu, Masashi Sugiyama. Learning from Similarity-Confidence Data. Proceedings of the 38th International Conference on Machine Learning (ICML'21), to appear, 2021. (CCF A)[16] Dengbao Wang, Lei Feng, Minling Zhang. Learning from Complementary Labels via Partial-Output Consistency Regularization. Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI'21), to appear, 2021. (CCF A)[15] Zhuoyi Lin, Lei Feng*, Rui Yin, Chi Xu, Chee Keong Kwoh. GLIMG: Global and Local Item Graphs for Top-N Recommender Systems. Information Sciences (INS), to appear, 2021. (IF=6.795, 中科院一区, *通讯作者)[14] Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng, Bo An, Masashi Sugiyama. Provably consistent Partial-Label Learning. Proceedings of the 34th Annual Conference on Neural Information Processing Systems (NeurIPS'20), to appear, 2020. (CCF A)[13] Lei Feng*†, Takuo Kaneko†, Bo Han, Gang Niu, Bo An, Masashi Sugiyama. Learning with Multiple Complementary Labels. Proceedings of the 37th International Conference on Machine Learning (ICML'20), pp.3072-3081, 2020. (CCF A, *通讯作者, †共同一作)[12] Jiaqi Lv, Miao Xu, Lei Feng, Gang Niu, Xin Geng, Masashi Sugiyama. Progressive Identification of True Labels for Partial-Label Learning. Proceedings of the 37th International Conference on Machine Learning (ICML'20), pp.6500-6510, 2020. (CCF A)[11] Jun Huang*, Linchuan Xu, Jing Wang, Lei Feng*, Kenji Yamanishi. Discovering Latent Class Labels for Multi-Label Learning. Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI'20), pp.3058-3064, 2020. (CCF A, *通讯作者)[10] Lei Feng, Senlin Shu, Zhuoyi Lin, Fengmao Lv, Li Li, Bo An. Can Cross Entropy Loss Be Robust to Label Noise? Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI'20), pp.2206-2212, 2020. (CCF A)[9] Hongxin Wei, Lei Feng*, Xiangyu Chen, Bo An. Combating Noisy Labels by Agreement: A Joint Training Method with Co-Regularization. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'20), pp.13726-13735, 2020. (CCF A, *通讯作者)[8] Lei Feng, Jun Huang, Senlin Shu, Bo An. Regularized Matrix Factorization for Multi-Label Learning with Missing Labels. IEEE Transactions on Cybernetics (IEEE-TCYB), DOI: 10.1109/TCYB.2020.3016897. (IF=11.079, 中科院一区)[7] Yan Yan, Shining Li, Lei Feng*. Partial Multi-Label Learning with Mutual Teaching. Knowledge-Based Systems (KBS), DOI: 10.1016/j.knosys.2020.106624. (IF=5.921, 中科院一区, *通讯作者)[6] Lei Feng, Hongxin Wei, Qingyu Guo, Zhuoyi Lin, Bo An. Embedding-Augmented Generalized Matrix Factorization for Recommendation with Implicit Feedback. IEEE Intelligent Systems (IEEE-IS), DOI: 10.1109/MIS.2020.3036136. (IF=3.21, 中科院三区)[5] Lei Feng, Bo An. Partial Label Learning with Self-Guided Retraining. Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI'19), pp.3542-3549, 2019. (CCF A)[4] Lei Feng, Bo An, Shuo He. Collaboration based Multi-Label Learning. Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI'19), pp.3550-3557, 2019. (CCF A)[3] Lei Feng, Bo An. Partial Label Learning by Semantic Difference Maximization. Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI'19), pp.2294-2300, 2019. (CCF A)[2] Shuo He, Lei Feng, Li Li. Estimating Latent Relative Labeling Importances for Multi-Label Learning. Proceedings of the 2018 IEEE Conference on Data Mining (ICDM'18), pp.1013-1018, 2018. (CCF B)[1] Lei Feng, Bo An. Leveraging Latent Label Distributions for Partial Label Learning. Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI'18), pp.2107-2113, 2018. (CCF A)@一只离经叛道的卷毛:二十多岁的博导,不用怀疑,绝对是学术大牛。学术大牛在这个年龄正是出科研成果的高峰期。
@GREAM:把他当研究员,待遇多高都可以,但当教授,暂时还不合适。教书,得有个过程。
@春生夏长:有志不在年高,只要有学识,一样的重大敢用,为重庆大学点赞!
@楚枫大大:估计有权威期刊的论文,或者有重大发明,不然不能服众
你的导师和你同龄是怎样的体验?
欢迎大家留言讨论~
03
据统计,79%的论文未能成功发表,是因为统计方案的错误应用,它直接影响了临床研究结果的可信度和通过率。科研小白如何玩好统计分析?需要牢记于心的就是知道什么数据该用什么统计方法,掌握以下4步研究方案就成功了一半:1. 判断是什么数据,定量、定性or等级?2. 判断是什么设计,配对?两组?多组?3. 判断用什么统计方法?4. 选择用什么软件?数据导入软件,软件操作给出结果。
熟记以下流程图对照上述说的4个步骤并参考下方统计教程,完美搞定统计分析方法问题!
名校教程:统计学最全视频课
01 【上海交大】:统计学原理最全入门教程50课02 【厦门大学】:国家级精品统计教程37课
1、统计综合评价
05【中山大学】:医学统计学精品教程45课
4、卡方检验、基于秩次的非参数检验
神器加持:搞定统计必备软件
2、GraphPad prism 之重复测量资料方差分析-实捐3、GraphPad prism之析因设计方差分析-实操4、GraphPad prism 之T检验-实操5、GraphPad prism之线性分析-实操6、GraphPad prism之秩和检验-实操7、GraphPad prism 之卡方检验-实操8、GraphPad prism 之生存分析-实操9、GraphPad prism 之ROC曲线-实操10、GraphPad prism之统计图的排版与导出-实操11、GraphPad prism之横纵坐标编辑-实操12、GraphPad prism 之出图规范-实操
05【30天攻克】954张PPT学医学统计学
方式1:转发本文至100人以上科研群/朋友圈,保留30分钟截图给小编审核领取
方式2:扫描上方海报二维码,邀请好友助力直接获取
SCI审稿人自述:1000篇被拒的文章中,98%都败在了这个环节...
免翻,完美替代Google学术
多级分组、快速导入...这款免费文献管理工具比想象中好用!
Tips:点击“阅读原文”领取最新更新资源包!