查看原文
其他

利用国产之光 ChatGLM3 打造完全私有化 AI 客服

米开朗基杨 Sealos 2023-12-07

FastGPT (https://ai.fastgpt.in) 是一款专为客服问答场景而定制的开箱即用的 AI 知识库问答系统。该系统具备可视化工作流功能,允许用户灵活地设计复杂的问答流程,几乎能满足各种客服需求。

在国内市场环境下,离线部署对于企业客户尤为重要。由于数据安全和隐私保护的考虑,企业通常不愿意将敏感数据上传到线上大型 AI 模型 (如 ChatGPT、Claude 等)。因此,离线部署成为一个刚需

幸运的是,FastGPT 本身是开源的,除了可以使用其在线服务外,也允许用户进行私有化部署。相关的开源项目代码可以在 GitHub 上找到:https://github.com/labring/fastgpt

正好上周 ChatGLM 系列推出了其最新一代的开源模型——ChatGLM3-6B。该模型在保留前两代模型流畅对话和低部署门槛的优点基础上,带来了以下新特性:

  1. 更强大的基础模型:ChatGLM3-6B 的基础模型,名为 ChatGLM3-6B-Base,具有更丰富的训练数据、更合理的训练策略和更多的训练步数。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base 具有在 10B 以下的预训练模型中优秀的性能。

  2. 更完善的功能:ChatGLM3-6B 引入了全新设计的 Prompt 格式,除了支持正常的多轮对话,还原生支持如工具调用 (Function Call)、代码执行 (Code Interpreter) 和 Agent 任务等复杂场景。

  3. 更全面的开源计划:除了 ChatGLM3-6B,该团队还开源了基础模型 ChatGLM-6B-Base 和长文本对话模型 ChatGLM3-6B-32K。以上所有权重对学术研究完全开放,在登记后亦允许免费商业使用。

本文接下来将详细介绍如何私有化部署 ChatGLM3-6B,并与 FastGPT 结合,构建一个完完全全私有化的 AI 知识库问答系统

通过这样的整合,企业不仅可以保证数据安全,还能利用最新、最强大的 AI 技术来提升客服效率和用户体验

One API 部署

FastGPT 可以通过接入 One API 来实现对各种大模型的支持,你可以参考 FastGPT 的文档来部署 One API:https://doc.fastgpt.in/docs/installation/one-api/

FastGPT 部署

如果你不嫌麻烦,可以选择在本地使用 Docker Compose 来部署 FastGPT。

我推荐直接使用 Sealos 应用模板来一键部署,Sealos 无需服务器、无需域名,支持高并发 & 动态伸缩。打开以下链接即可一键部署 👇

https://cloud.sealos.top/?openapp=system-fastdeploy%3FtemplateName%3Dfastgpt

  • root password 是默认的密码,默认用户名是 root
  • base url 填入 One API 提供的 API 接口。假设 One API 地址是 https://xxx.cloud.sealos.top,那么 base url 就是 https://xxx.cloud.sealos.top/v1。如果你的 One API 和 FastGPT 都部署在 Sealos 中,这里的 base url 可以填入 One API 的内网地址,例如我的内网地址是:http://one-api-wkskpejy.ns-sbjre322.svc.cluster.local:3000/v1
  • api key 填入由 One API 提供的令牌。

填好参数之后,点击【部署应用】:

部署完成后,点击【确认】跳转到应用详情。

等待应用的状态变成 running 之后,点击外网地址即可通过外网域名直接打开 FastGPT 的 Web 界面。

我们暂时先不登录,先把 ChatGLM3-6B 模型部署好,然后再回来接入 FastGPT。

ChatGLM3-6B 部署

ChatGLM3 的项目地址为:https://github.com/THUDM/ChatGLM3

该项目 README 已经提供了在 GPU 环境中如何进行部署的详细步骤。但本文我们将专门讨论如何在没有 GPU 支持的情况下,仅使用 CPU 来运行 ChatGLM3

首先登录 Sealos 国内版集群:https://cloud.sealos.top/

然后打开【应用管理】:

应用名称随便填,镜像名为:registry.cn-hangzhou.aliyuncs.com/ryyan/chatglm.cpp:chatglm3-q5_1

CPU 和内存拉到最大值,不然跑不起来。容器暴露端口设置为 8000。然后点击右上角的【部署】:

部署完成后,点击查看运行日志:

很好,三分钟解决战斗!

将 ChatGLM3-6B 接入 One API

打开 One API 的 Web 界面,添加新的渠道:

  • 类型选择 OpenAI。
  • 名称按自己的心意填。
  • 模型名称可以通过自定义模型名称来设置,例如:ChatGLM3。
  • 密钥随便填。
  • 代理地址填入 ChatGLM3-6B 的 API 地址。如果你按照本教程把 One API 和 ChatGLM3-6B 全部部署在 Sealos 中,那就可以直接填 ChatGLM3-6B 的内网地址。

最后点击【提交】即可。

将 ChatGLM3-6B 接入 FastGPT

最后我们来修改 FastGPT 的配置,将 ChatGLM3-6B 接入 FastGPT。

首先在 FastGPT 的应用详情中点击【变更】:

然后点击配置文件中的 /app/data/config.json

将文件值修改为如下的值:

{
  "SystemParams": {
    "pluginBaseUrl""",
    "openapiPrefix""openapi",
    "vectorMaxProcess"15,
    "qaMaxProcess"15,
    "pgIvfflatProbe"10
  },
  "ChatModels": [
    {
      "model""ChatGLM3",
      "name""ChatGLM3",
      "price"0,
      "maxToken"4000,
      "quoteMaxToken"2000,
      "maxTemperature"1.2,
      "censor"false,
      "defaultSystemChatPrompt"""
    }
  ],
  "QAModels": [
    {
      "model""ChatGLM3",
      "name""ChatGLM3",
      "maxToken"8000,
      "price"0
    }
  ],
  "CQModels": [
    {
      "model""ChatGLM3",
      "name""ChatGLM3",
      "maxToken"8000,
      "price"0,
      "functionCall"true,
      "functionPrompt"""
    }
  ],
  "ExtractModels": [
    {
      "model""ChatGLM3",
      "name""ChatGLM3",
      "maxToken"8000,
      "price"0,
      "functionCall"true,
      "functionPrompt"""
    }
  ],
  "QGModels": [
    {
      "model""ChatGLM3",
      "name""ChatGLM3",
      "maxToken"4000,
      "price"0
    }
  ],
  "VectorModels": [
    {
      "model""text-embedding-ada-002",
      "name""Embedding-2",
      "price"0.2,
      "defaultToken"700,
      "maxToken"3000
    },
    {
      "model""m3e",
      "name""M3E(测试使用)",
      "price"0.1,
      "defaultToken"500,
      "maxToken"1800
    }
  ]
}

修改完成后,点击【确认】,然后点击右上角的【变更】,等待 FastGPT 重启完成后,再次访问 FastGPT,点击【立即开始】进入登录界面,输入默认账号密码后进入 FastGPT 控制台:

新建一个应用,模板选择【简单的对话】,点击【确认创建】。

AI 模型选择 ChatGLM3,然后点击【保存并预览】。

点击左上角【对话】打开一个聊天会话窗口:

按国际惯例先来测试一下它的自我认知

再来检测一下数学能力:

逻辑推理能力:

接入 M3E 向量模型

刚刚我们只是测试了模型的对话能力,如果我们想使用 FastGPT 来训练知识库,还需要一个向量模型。FastGPT 线上服务默认使用了 OpenAI 的 embedding 模型,如果你想私有部署的话,可以使用 M3E 向量模型进行替换。M3E 的部署方式可以参考文档:https://doc.fastgpt.in/docs/custom-models/m3e/



Sealos 社区长期征稿,欢迎 Sealos 终端用户与开发者前来投稿,奖金💰丰厚!详情可查看文章👇

爱 Sealos?来投稿!有奖金,还没有截止日期...


加入 Sealos 开源社区体验像个人电脑一样简单的云操作系统



🏠官网链接

https://sealos.io


🐙GitHub 地址

https://github.com/labring/sealos


📑访问 Sealos 文档

https://sealos.io/zh-Hans/docs/Intro


🏘️逛逛论坛

https://forum.laf.run/

往期推荐

脸贴脸教大家使用 Sealos 一键部署 Kubernetes 集群,老奶奶都会

2023-10-27

智能微秘书+FastGPT,打造你的超级微信助手!

2023-10-16

这三大爆款开源项目竟出自同一个20人的小公司?

2023-10-13


关于 Sealos

Sealos 是一款以 Kubernetes 为内核的云操作系统发行版。它以云原生的方式,抛弃了传统的云计算架构,转向以 Kubernetes 为云内核的新架构,使企业能够像使用个人电脑一样简单地使用云。


关注 Sealos 公众号与我们一同成长👇👇👇

继续滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存