『科普』一文读懂液氢运输的N个难题!
制氢技术有哪些?
传统制氢方式
传统的化石燃料制氢主要有煤制氢、天然气制氢,氯碱工业副产提纯和甲醇制氢等。中国煤炭资源丰富,煤制氢成本低、技术成熟,虽然存在产氢效率低、环境污染的问题,但煤化工仍是短期内中国氢的主要来源。天然气制氢成本略高于煤制氢,能量转化率高,但硬件成本较高,也是目前工业中主要的制氢方式。氯碱工业副产提纯制氢则是回收提纯原本直接排放到空气中的副产物氢气,具有良好的经济前景。甲醇制氢则主要受甲醇原料成本的限制,工业中应用较少。
新型制氢方式
化石燃料日益枯竭,传统制氢方法带来的环境污染问题,促使从其他原料中获取氢的研究快速发展。目前采用新型制氢方式主要有: 电解水制氢、光制氢和生物质制氢等,未来主要需要攻克的技术问题是大规模低成本制氢。
电解水制氢技术研究已久,其原料广泛、无污染,目前的主要问题是电解过程中电力成本过高。通过降低电解过程中的能耗以及采用清洁能源作为电力来源的方式,解决成本问题后将不失为一种有效的方式。
光制氢中除了用光能提供电解水所需能量的制氢方法外,还可以通过光热化学、光电化学和人工光合制氢。但光制氢技术尚处于实验阶段,距离产业化应用还有一定的距离。
生物质制氢是将秸秆、稻草等通过裂解或酶催化反应得到氢气,和光制氢一样,生物质制氢技术尚未成熟,无法做到长时间连续稳定地运行。
氢液化流程
氢的液化最早由英国的 James Dewar 于 1898年通过 J-T 节流实现。到 1902 年出现了 Claude循环,区别于之前的氢液化方式主要在于膨胀机的使用。使用液氮预冷、膨胀机提供低温区冷量的 Claude 循环,效率比采用 J-T 节流的 Linde- Hampson 循环高约 50 - 70% 。
目前,Claude 循环仍然是大型氢液化装置的基础,根据制冷方式的不同又分为氢膨胀制冷和氦膨胀制冷氢液化流程。氢膨胀制冷循环流程采用氢气自膨胀提供低温区冷量,而氦膨胀制冷循环氢液化流程则是利用沸点更低的氦作为制冷剂提供低温区冷量。
氢膨胀制冷氢液化循环流程
无论在氢膨胀制冷或在氦膨胀制冷氢液化流程中,透平膨胀机均是最关键的核心设备,也是系统低于 80 K 温区的主要冷量来源。
为了获得透平膨胀机的大冷量、减少系统复杂性,透平膨胀机需运行在大膨胀比工况,这就意味着透平中的工质流动与能量转换复杂。另外,氢、氦的物性与普通工质有着迥然区别,这就使透平的转速超高,需采用氢、氦气体轴承,这就对高速转子系统的稳定性带来了更高的要求。要获得优异的透平膨胀机性能,不仅需要对冷端的低温膨胀特性进行深入研究,也需要充分关注制动端的离心压缩特性和整机的匹配,且在热力学设计与分析的同时,尚需考虑转子的气动与机械性能。大冷量氢、氦透平膨胀机的研制是目前氢液化系统的难点和急需解决的问题。
透平膨胀机模拟动画
国内外液氢产能对比
中国液氢工厂有陕西兴平、海南文昌、北京101 所、西昌基地、鸿达兴业等。根据科技部 2020 年“可再生能源与氢能技术”重点研发专项指南,中国急需研制液化能力≥5 d /t 且氢气液化能耗≤13 kWh/kgLH2的单套装备,指标与国外主流大型氢液化装置性能基本一致,以期尽快缩短我国产品成本、质量和制造水平与世界发达国家的差距。
作为液氢生产大国的美国一直以来对中国都采取“严格禁运,严禁交流”的策略,同时还限制其同盟国的公司,例如法液空、林德等公司向中国出售设备和技术。这些都使得我国获取氢液化设备的成本高昂,在进行价格谈判时处于被动地位。在设备的建造周期、设备可获得性上存在不确定性。同时进口设备还存在维修维护费用高等问题。在技术封锁下,中国尚未具备独立研发大规模氢液化装置的能力,严重限制了我国氢能产业的发展,是目前亟待解决的问题。
国内氢液化装置发展方向
液氢储运怎么做?
液氢的储存
储氢是利用氢能的关键,也是全世界努力研究的难题。衡量储氢有两个指标,体积密度( kgH2 /m3 ) 和储氢质量百分比( wt% ) 。体积密度为单位体积系统内储存氢气的质量; 储氢质量百分比为系统储存氢气的质量与系统质量的比值。目前已经具备大规模应用水平的储氢方式主要是高压压缩储存和液氢储存。固态储氢的能量虽然高于液态氢,但保障其吸氢和解氢特性还需要大量的研究和开发,暂时无法投入大规模使用。
对比气氢和液氢存储,从下表中可以看到即使氢气压力高达 700 bar,6 kg 的氢气还需要一个150 L 左右的储氢罐,而-253 ℃的液氢密度可以达到 71 g /L。所以气态存储需要压缩到高压,将氢气加压到 45 MPa 时,其储氢质量百分比只有4wt% ,达不到美国能源部( DOE) 的指标,所以一般气氢存储的压力为 70 MPa。
从储氢密度上来说,液氢存储具有绝对的优势,而液氢存储主要问题在于是冷量损失,储氢容器必须有良好的绝热。同时压缩氢气需 要20% 的氢气能量,液化氢气则需要高达 40%。
液氢储存的技术难点和发展方向
ZBO 存储技术原理图
Cryo-compressed 技术结合了高压和低温存储。通过在 20 K 时将 LH2从 1 bar 时的 70 g/L,压缩到 240 bar 时的 87 g/L。从而提高液氢的体积密度,并减少蒸发损失,可有效延长液氢在绝热压力容器中的休眠期。低温压缩罐 ( 276 bar,20 K) 预计可以达到 5.8wt%。
液氢的输运
早在上个世纪,国外发达国家如美国日本法国就已经在航天领域大规模使用液氢,其中美国还率先在民用领域使用。这些国家对液氢输运的统一集中生产液氢,和气氢输运的就地分散生产液氢进行了充分的调研,最终都选择了液氢输运的方式。主要原因在于液氢的能量密度远大于气氢,所以液氢需要的公路运力远小于气氢。当时日本的液氢和气氢对公路车运力要求为 1∶6,而美国则是 1∶20。
液氢的体积密度是 70.8 kg·m -3,体积能量密度达到 8.5 MJ·L-1,是气氢 15 MPa 运输压力下的 6.5 倍。因此将氢气深冷至 20 K 液化后,再利用槽罐车或者管道运输可大大提高运输效率。槽罐车的 容 量 大 约 为 65 m3,每次可净运输约4000 kg氢气。计算分析表明在上海地区加氢站的大规模氢气运输采用管道输运、长管气氢拖车输运和液氢输运的成本分别为 : 6 元/kg、 2.3 元/kg和 0.4 元/kg。
虽然在目前,由于没有先进的大规模氢液化工厂,气氢运输在总成本上尚占据优势。但随着燃料电池汽车的数量逐渐增长到万辆级、十万辆级,氢气的日消耗量也逐渐增长到 30 t 和 300 t,加氢站将达到上百座的数量级,这时部分加氢站的输气量也将较大。同时,氢液化工厂具有规模性后,会大大降低液氢的获取成本,采用液氢输送优势就会很明显。目前,美日等发达国家已经将液氢的储运成本降低到高压气氢的八分之一左右,可以说液氢储运是未来大规模发展氢能的一项基础性研究。
气化加注氢气要点何在?
液氢气化
海水开架式气化器(ORV)- (国内首台套)
浸没燃烧式气化器采用燃气作为热源,可燃气燃烧后加热水槽,低温液体经水槽受热气化。浸没燃烧式气化器设计结构紧凑,可以快速启动,适用于应急和调峰场合,但也存在控制、维护成本高的缺点。
浸没燃烧式气化器( SCV )
中间介质气化器是通过中间传热介质换热,实际是一个蒸发冷凝器,常见的介质有丙烷、异丁烷、氨、氟利昂等。介质先与热源换热,再与低温液体换热。
但对于需要大规模分布在全国的氢加注站,若以淡水代替海水为热源,成本将会有很大的提升。采用成本更低的空气作为热源的空温式气化器( AVV ) 也是未来液氢气化器的一种思路。利用空气自然对流直接或间接地加热低温液体,制造和运行成本较低。缺点是对环境温度很敏感,易结冰。
与天然气相比,氢气的物性更加特殊:
液氢极低的沸点导致需要的热量很高; 液氢气化为同温度下的气体,其体积约增大 53 倍,会出现严重的两相流问题; 氢气和空气混合的燃烧爆炸范围很广,要严格防止泄漏并注意防爆; 氢脆以及氢气的强渗透性对材料也提出了更高的要求。
选择液氢气化器时首先要根据氢气加注站所处环境及可获得的热源选择气化器的种类,还需要考虑以下问题:
气化器的设备要具备良好的耐低温性能,管道接口、阀门等连接处需做特殊处理 ; 合理选择气化器的处理能力和运行参数,设置应急方案,增加适应性和可靠性; 在配置气化器时,可考虑不同种类气化器组合,控制运行费用和投资。
除此之外,液氢在气化过程中会释放更多的冷量,所以对液氢冷能的利用也是将来重要的发展方向。液氢冷能可以利用在发电、空气液化分离、制取液态 CO2和干冰、冷冻仓库等方面,具有巨大的经济效益。
压缩加注
车载储氢瓶中的氢气受到压缩引起的温升是最主要的原因;
快速流动的氢气动能转化为内能,产生热量;
氢气通过节流阀,可能会因为焦 - 汤节流负效应导致温度升高。
来源:低温与超导