Stata:定制论文中表1-table1
👇 连享会 · 推文导航 | www.lianxh.cn
🍎 Stata:Stata基础 | Stata绘图 | Stata程序 | Stata新命令 📘 论文:数据处理 | 结果输出 | 论文写作 | 数据分享 💹 计量:回归分析 | 交乘项-调节 | IV-GMM | 时间序列 | 面板数据 | 空间计量 | Probit-Logit | 分位数回归 ⛳ 专题:SFA-DEA | 生存分析 | 爬虫 | 机器学习 | 文本分析 🔃 因果:DID | RDD | 因果推断 | 合成控制法 | PSM-Matching 🔨 工具:工具软件 | Markdown | Python-R-Stata 🎧 课程:公开课-直播 | 计量专题 | 关于连享会
连享会 · 2022空间计量专题
作者:姜昊 (华东师范大学)
邮箱:HaoJiang0204@outlook.com
温馨提示: 文中链接在微信中无法生效。请点击底部「阅读原文」。或直接长按/扫描如下二维码,直达原文:
目录
1. 命令介绍
2. 案例介绍
3. 相关推文
1. 命令介绍
table1_mc
是 Phil Clayton 编写的外部命令,用于为论文制定一个特征性事实描述的表格。
* 命令安装
ssc install table1_mc, replace
* 命令语法
table1_mc [if] [in] [weight], vars(var_spec) [options]
var_spec = varname vartype [%fmt1 [%fmt2]] [ \ varname vartype [%fmt1 [%fmt2]] \ ...]
默认情况下,table1_mc
会输出指定变量的基线特征结果。var_spec
用于指定的变量集合,其中:
varname
:指定单个变量,若进行多个变量的分析需要用反斜杠\
隔开;vartype
:指定描述变量的类型,且不可省略,否则代码报错。具体包括以下 7 种变量类型:contn
:用于服从正态分布的连续变量,返回均值和标准误;contln
:用于服从对数正态分布的连续变量,返回几何平均值和几何标准误;conts
:用于不服从正态分布与对数正态分布的连续变量,返回中位数与上下四分位数;cat
:类别变量,采用 Pearson 卡方检验组别差异;cate
:类别变量,采用 Fisher 精确检验组别差异;bin
:二分类变量,采用 Pearson 卡方检验组别差异;bine
:二分类变量,采用 Fisher 精确检验组别差异;%fmt1
:变量结果输出格式设定,参考format
的输出语法;%fmt2
:变量其他结果输出格式设定,参考format
的输出语法。
options
如下:
by(varname)
:分组变量,且varname
必须是字符串或者数字,并且仅包含非负整数,无论是否增加值标签;missing
:对于cat
和cate
的类别变量,将缺失值视为一个新的类别;test
:结果包括描述显著性检验的方法;statistic
:结果包括描述检验统计量值的列;percent
:报告二 (多) 分类变量在所属组别的比重;percent_n
:以 %(n) 格式报告二 (多) 分类变量在所属组别的比重与个数;slashN
:以 n/N 替代 n (%) 的格式报告二 (多) 分类变量在所属组别的统计内容;catrowperc
:报告多分类变量在不同组别的行百分比;pdp(#)
:设定 值小数位数;saving(filename [, export_excel_options])
:设定输出到 Excel 中的文件名与其他选项;clear
: 将 Stata 内存数据集用table1_mc
结果替换。
2. 案例介绍
为了进一步直观感受各个选项的作用,下文将选取汽车数据 (auto.dta) 进行案例演示。具体地,按照汽车是否属于国产 (用 foreign 变量衡量),分别对服从正态分布的 weight、服从对数正态分布的 price、不服从正态分布与对数正态分布的 mpg、多分类变量 rep78 和二分类变量 much_headroom 进行分析。
. sysuse auto, clear
. generate much_headroom = (headroom>=3)
. table1_mc, by(foreign) vars(weight contn %5.0f \ price contln %5.0f %4.2f ///
> \ mpg conts %5.0f \ rep78 cate \ much_headroom bin) onecol nospace
+--------------------------------------------+
| factor N_0 N_1 m_0 m_1 |
|--------------------------------------------|
| Weight (lbs.) 52 22 0 0 |
|--------------------------------------------|
| Price 52 22 0 0 |
|--------------------------------------------|
| Mileage (mpg) 52 22 0 0 |
|--------------------------------------------|
| Repair record 1978 48 21 4 1 |
|--------------------------------------------|
| much_headroom 52 22 0 0 |
+--------------------------------------------+
N_ ... #records used below, m_ ... #records not used
+--------------------------------------------------------------+
| Domestic Foreign p-value |
|--------------------------------------------------------------|
| N=52 N=22 |
|--------------------------------------------------------------|
| Weight (lbs.) 3317 (695) 2316 (433) <0.001 |
|--------------------------------------------------------------|
| Price 5534 (×/1.50) 5959 (×/1.44) 0.46 |
|--------------------------------------------------------------|
| Mileage (mpg) 19 (17-22) 25 (21-28) 0.002 |
|--------------------------------------------------------------|
| Repair record 1978 <0.001 |
| 1 2 (4%) 0 (0%) |
| 2 8 (17%) 0 (0%) |
| 3 27 (56%) 3 (14%) |
| 4 9 (19%) 9 (43%) |
| 5 2 (4%) 9 (43%) |
|--------------------------------------------------------------|
| much_headroom 35 (67%) 8 (36%) 0.014 |
+--------------------------------------------------------------+
Data are presented as mean (SD) or geometric mean (×/geometric SD) or
median (IQR) for continuous measures, and n (%) for categorical measures.
增加 missing
选项,则变量 rep78 的缺失值被识别为新的类别。
. table1_mc, by(foreign) vars(weight contn %5.0f \ price contln %5.0f %4.2f ///
> \ mpg conts %5.0f \ rep78 cate \ much_headroom bin) onecol nospace missing
+--------------------------------------------+
| factor N_0 N_1 m_0 m_1 |
|--------------------------------------------|
| Weight (lbs.) 52 22 0 0 |
|--------------------------------------------|
| Price 52 22 0 0 |
|--------------------------------------------|
| Mileage (mpg) 52 22 0 0 |
|--------------------------------------------|
| Repair record 1978 52 22 0 0 |
|--------------------------------------------|
| much_headroom 52 22 0 0 |
+--------------------------------------------+
N_ ... #records used below, m_ ... #records not used
+--------------------------------------------------------------+
| Domestic Foreign p-value |
|--------------------------------------------------------------|
| N=52 N=22 |
|--------------------------------------------------------------|
| Weight (lbs.) 3317 (695) 2316 (433) <0.001 |
|--------------------------------------------------------------|
| Price 5534 (×/1.50) 5959 (×/1.44) 0.46 |
|--------------------------------------------------------------|
| Mileage (mpg) 19 (17-22) 25 (21-28) 0.002 |
|--------------------------------------------------------------|
| Repair record 1978 <0.001 |
| 1 2 (4%) 0 (0%) |
| 2 8 (15%) 0 (0%) |
| 3 27 (52%) 3 (14%) |
| 4 9 (17%) 9 (41%) |
| 5 2 (4%) 9 (41%) |
| Missing 4 (8%) 1 (5%) |
|--------------------------------------------------------------|
| much_headroom 35 (67%) 8 (36%) 0.014 |
+--------------------------------------------------------------+
Data are presented as mean (SD) or geometric mean (×/geometric SD)
or median (IQR) for continuous measures, and n (%) for categorical measures.
增加 test
选项,每行结果后增加了显著性检验的方法。
. table1_mc, by(foreign) vars(weight contn %5.0f \ price contln %5.0f %4.2f ///
> \ mpg conts %5.0f \ rep78 cate \ much_headroom bin) onecol nospace missing test
+--------------------------------------------+
| factor N_0 N_1 m_0 m_1 |
|--------------------------------------------|
| Weight (lbs.) 52 22 0 0 |
|--------------------------------------------|
| Price 52 22 0 0 |
|--------------------------------------------|
| Mileage (mpg) 52 22 0 0 |
|--------------------------------------------|
| Repair record 1978 52 22 0 0 |
|--------------------------------------------|
| much_headroom 52 22 0 0 |
+--------------------------------------------+
N_ ... #records used below, m_ ... #records not used
+-----------------------------------------------------------------------------------+
| Domestic Foreign Test p-value |
|-----------------------------------------------------------------------------------|
| N=52 N=22 |
|-----------------------------------------------------------------------------------|
| Weight (lbs.) 3317 (695) 2316 (433) Ind. t test <0.001 |
|-----------------------------------------------------------------------------------|
| Price 5534 (×/1.50) 5959 (×/1.44) Ind. t test, logged data 0.46 |
|-----------------------------------------------------------------------------------|
| Mileage (mpg) 19 (17-22) 25 (21-28) Wilcoxon rank-sum 0.002 |
|-----------------------------------------------------------------------------------|
| Repair record 1978 Fisher's exact <0.001 |
| 1 2 (4%) 0 (0%) |
| 2 8 (15%) 0 (0%) |
| 3 27 (52%) 3 (14%) |
| 4 9 (17%) 9 (41%) |
| 5 2 (4%) 9 (41%) |
| Missing 4 (8%) 1 (5%) |
|-----------------------------------------------------------------------------------|
| much_headroom 35 (67%) 8 (36%) Chi-square 0.014 |
+-----------------------------------------------------------------------------------+
Data are presented as mean (SD) or geometric mean (×/geometric SD) or median (IQR) for
continuous measures, and n (%) for categorical measures.
增加 statistic
选项,每行结果后增加了检验统计量值。
. table1_mc, by(foreign) vars(weight contn %5.0f \ price contln %5.0f %4.2f ///
> \ mpg conts %5.0f \ rep78 cate \ much_headroom bin) onecol nospace missing test statistic
+--------------------------------------------+
| factor N_0 N_1 m_0 m_1 |
|--------------------------------------------|
| Weight (lbs.) 52 22 0 0 |
|--------------------------------------------|
| Price 52 22 0 0 |
|--------------------------------------------|
| Mileage (mpg) 52 22 0 0 |
|--------------------------------------------|
| Repair record 1978 52 22 0 0 |
|--------------------------------------------|
| much_headroom 52 22 0 0 |
+--------------------------------------------+
N_ ... #records used below, m_ ... #records not used
+-----------------------------------------------------------------------------------------------+
| Domestic Foreign Test Statistic p-value |
|-----------------------------------------------------------------------------------------------|
| N=52 N=22 |
|-----------------------------------------------------------------------------------------------|
| Weight (lbs.) 3317 (695) 2316 (433) Ind. t test t(72)= 6.25 <0.001 |
|-----------------------------------------------------------------------------------------------|
| Price 5534 (×/1.50) 5959 (×/1.44) Ind. t test, logged data t(72)= -0.74 0.46 |
|-----------------------------------------------------------------------------------------------|
| Mileage (mpg) 19 (17-22) 25 (21-28) Wilcoxon rank-sum Z= -3.10 0.002 |
|-----------------------------------------------------------------------------------------------|
| Repair record 1978 Fisher's exact N/A <0.001 |
| 1 2 (4%) 0 (0%) |
| 2 8 (15%) 0 (0%) |
| 3 27 (52%) 3 (14%) |
| 4 9 (17%) 9 (41%) |
| 5 2 (4%) 9 (41%) |
| Missing 4 (8%) 1 (5%) |
|-----------------------------------------------------------------------------------------------|
| much_headroom 35 (67%) 8 (36%) Chi-square Chi2(1)= 6.08 0.014 |
+-----------------------------------------------------------------------------------------------+
Data are presented as mean (SD) or geometric mean (×/geometric SD) or median (IQR) for continuous
measures, and n (%) for categorical measures.
增加 saving
选项将结果保存至指定位置,并利用 clear
选项将 Stata 内存中数据用输出结果替换。
. table1_mc, by(foreign) vars(weight contn %5.0f \ price contln %5.0f %4.2f ///
> \ mpg conts %5.0f \ rep78 cate \ much_headroom bin) onecol nospace ///
> missing test statistic saving("Table 1.xlsx", replace) clear
file Table 1.xlsx saved
3. 相关推文
Note:产生如下推文列表的 Stata 命令为:
lianxh 统计, m
安装最新版lianxh
命令:
ssc install lianxh, replace
专题:Stata入门 25常见种误区:P值、置信区间和统计功效 专题:Stata命令 Stata:描述性统计分析新命令-dstat 专题:Stata资源 在线统计课本分享:online-statistics-book 专题:数据处理 Stata数据处理:清洗中国城市建设统计年鉴 Stata:变量非重复值统计-distinct Stata:mtab2-将二维统计表存储为矩阵 滚动吧统计量!Stata数据处理 Stata数据处理:统计组内非重复值个数 专题:Stata绘图 常用科研统计绘图工具介绍 专题:结果输出 Stata结果输出:addest自己定制输出的统计量 Stata结果输出-addest:自己添加统计量 baselinetable命令:论文基本统计量表格输出到Excel和Word sumup:快速呈现分组统计量 Stata:一文搞定论文表1——基本统计量列表 专题:回归分析 抛弃p值?经济显著性与统计显著性 专题:机器学习 Lasso:拉索中如何做统计推断
课程推荐:因果推断实用计量方法
主讲老师:丘嘉平教授
🍓 课程主页:https://gitee.com/lianxh/YGqjp
New! Stata 搜索神器:
lianxh
和songbl
GIF 动图介绍
搜: 推文、数据分享、期刊论文、重现代码 ……
👉 安装:
. ssc install lianxh
. ssc install songbl
👉 使用:
. lianxh DID 倍分法
. songbl all
🍏 关于我们
连享会 ( www.lianxh.cn,推文列表) 由中山大学连玉君老师团队创办,定期分享实证分析经验。 直通车: 👉【百度一下: 连享会】即可直达连享会主页。亦可进一步添加 「知乎」,「b 站」,「面板数据」,「公开课」 等关键词细化搜索。