其他
编者按:向数字化的智能制造要生产力,是很多国家共同的战略选择。基于深耕制造行业七年的数字化实践,阿里云对于制造业向智能制造升级提炼了九大场景,以及对应九大场景的可行解决方案。从微观到宏观,这九大场景已经基本覆盖了智能制造的所有关键环节,完全可以作为回答智能制造现阶段问题的着力点。导语中国的制造业,无论是流程制造还是离散制造,都遇到了进一步发展的瓶颈期。对于流程制造来说,如水泥、钢铁,表现比较明显的是能源利用率的提升问题——特别是进入双碳时代后,制造业的环保需求逐步加大。对于离散制造来说,突出问题是需求侧市场变化太快,工厂的投入和产能存在巨大不确定性。“如果将流程制造、离散制造等一系列的问题做抽象与提炼会发现其中有共同的痛点,无论是设备的能耗优化/预测性维护、生产线的自动控制/工艺优化/调度优化、产品的质量检测,还是供应链管理、营销与销售预测、产销协同,可以归类为:用大数据技术解决产线上的具体问题、AI技术落地于具体场景的问题,以及基于数据中台和AI引擎的全链路数据一体化用于解决供应链上下游协同的问题。总之,一系列的问题都可以归结为:如何用新的数据智能方式去帮助制造业企业实现产业升级。”阿里云行业线产品解决方案部总经理曾震宇总结道。向数字化的智能制造要生产力,是很多国家共同的战略选择。基于深耕制造行业七年的数字化实践,阿里云对于制造业向智能制造升级提炼了九大场景,以及对应九大场景的可行解决方案。解决这些共性问题的底座是四种能力:数据中台、AI优化控制引擎、数字孪生与云钉一体。其中,数据中台是制造企业非常重要的基础能力。过去制造业可被实时搜集、感知和在线的数据少;未来3--5年,制造业的实时数据量一定会急剧增加,包括设备数据、传感器数据、摄像头数据等,需要围绕这些数据进行建模、加工,然后基于数据中台,不断训练AI数据模型并形成AI引擎,与工厂师傅的经验形成互补,最终形成AI知识图谱,数字化一切以前不可量化的人为因素。另外,和所有的技术一样,虚拟现实融合技术,真正规模化产生产业价值的方向并非在生活娱乐领域,数字孪生是工业发展的大趋势。工厂内全维度数据构成的数字世界,今天已经不再是“科幻”,而是能够利用数据和算法检测生产线上的设备健康状况、产品质量,并进行预测性智能决策。云钉一体解决的是组织协同问题。钉钉在实践过程中将制造业的组织、系统集成在一起,整个办公流程、生产流程、生产管理、质量控制、售后服务的自动化,都可以基于钉钉的协同平台和应用开发平台实现。智能制造的九大场景有六大场景着眼于产线的微观智能,分别是自适应控制、生产工艺优化、能耗优化、专家知识系统、智能质检、预测性维护;另外三大场景着眼于大型组织的数据归一与协同的宏观智能,分别是数据移动在线、产销协同与柔性制造、工业数字孪生。从微观到宏观,这九大场景已经基本覆盖了智能制造的所有关键环节,完全可以作为回答智能制造现阶段问题的着力点。场景一:数据移动在线化去年12月工信部等八个部门正式印发《“十四五”智能制造发展规划》,明确到2035年,规模以上制造业企业全面普及数字化网络化,重点行业骨干企业基本实现智能化。中国工程院院士李培根进一步解读,“发展智能制造,数据是基础,数据是血液”。数据融合是制造企业降低生产各环节成本、提高生产效率的关键。人员的排班排产、产线的调度优化、货物流转、金融周转等运营效率的提速,都需要生产经营数据的在线化与移动化。数据的在线可以让企业管理人员在生产、经营过程中,依据实时数据不断调优决策。钉钉发布的制造行业解决方案2.0从对生产状况影响最大的人和设备着手,让设备数据、成本数据实时呈现。“设备上钉”产品实现了人与设备的连接,每一台设备都是一个钉钉账号,管理人员可在钉钉上查看设备运行状况,任何设备故障都可以通过钉钉自动通知到人,让风险在第一时间被发现、被处理;设备上的生产进度,成为采销、生产计划的依据。除了“设备上钉”产品,“码上制造”的专属行业底座,通过生产码、库位码、报工码、物料码等四个生产环节的二维码,解决制造企业最核心的进(采购)、销(销售)、存(仓储)、生产环节数据在线化和移动化的难题。这些能力全面开放给钉钉生态,在钉钉“制造工作台”“行业广场”上开发千人千面、个性化的工作界面,让企业自主选择符合需求的SaaS应用,让更多类似设备上钉、码上制造、计件日结的创新在钉钉的行业平台上长出来。中国民营企业500强的东方希望集团于2017年开始使用钉钉,过去五年间,东方希望在钉钉上开发了67个针对不同场景的应用,集成到钉钉上,实时呈现工厂里的生产状况和工艺,一旦出现产线异常,便由钉钉自动通知责任人。场景二:自适应控制利用生产装备和工艺的自动化是智能制造在过去几十年追求的重要目标,但是由于生产设备和生产现场的复杂性、生产原料的不稳定性和环境变化,生产产线完全依赖传统的PLC(可编程逻辑控制器)、DCS(分散控制系统)很难做到自动控制,依赖产线工人根据经验判断各种异常进行频繁的操作控制,也会因为疲劳和经验的差异出现波动。融合数据感知和AI决策的自适应控制应运而生。自适应控制基于产线的机理进行建模,根据历史记录,生产结果数据对模型进行训练和优化,将模型下发到生产端根据产线实时数据推理生产参数并推荐,最后结合控制技术对生产线进行闭环控制。清洁能源行业的瀚蓝环境拥有22个生活垃圾焚烧发电项目,日生活垃圾焚烧发电总规模33100吨。仅是广东佛山南海厂区的六台焚烧锅炉,每天就能“消化”近3000吨垃圾,发电150万度,足以满足南海区16万户40万人的生活用电需求。整个垃圾焚烧发电的过程,为了尽量做到让垃圾的燃烧更充分、蒸汽更稳定,主要是靠锅炉师傅调节焚烧炉的各种参数。限制发展的最大阻碍,就出在焚烧过程对人工经验的过度依赖。不同工艺专家技术水平不同,调出来的效果相差较大。而培养一位合格的工艺专家需要1--2年的时间,一旦离岗,经验也随之带走。企业亟需将经验中的隐性数据转化为显性知识,嵌入到自适应控制中,让机器协助人类来完成焚烧过程的复杂决策与控制。垃圾的充分稳定燃烧,过程中充斥着复杂的物理与化学变化,涉及多达2000个实时测点数据。——第一步,需要大量的数据计算,识别出最关键的30个测点数据,包括推料进程、推料动作、一次风量、一次风压、二次风量、炉膛温度、烟气含氧量、主蒸汽压力等。——第二步,锁定关键参数后,输入到工业大脑平台上的仿真预测模型,进行垃圾焚烧过程的模型训练,实时预测焚烧产生的蒸汽情况。通过对每次垃圾推料的前后关系分析,比如推料前的炉型状态、推料动作,以及推料后的焚烧反应,构建数据的输入输出关系模型。训练过的焚烧炉蒸汽量仿真预测模型可以准确预测90秒后的蒸汽量,准确度到达95%,为后续推料提供决策依据。——第三步,算法模型分析的结果通过API接口把推荐工艺参数实时提供出来。构建人机交互界面,部署到工厂控制室,辅助工人决策什么时候该推料,以及如何推料等操作建议。过去操作员4个小时内需要操作30次,才能让垃圾焚烧过程保持稳定,而如今在AI的协助下,干预6次即可。工业大脑辅助对比单纯人工操作,可以提升约1%--2%的蒸汽产量,锅炉蒸汽量稳定性提升20%。——第四步,算法直接与锅炉系统连接,实现对垃圾焚烧过程的自动控制。由人控制机器转为人监测机器、无需干预,降低对人工经验的依赖。场景三:工艺优化工艺,是一家企业如何利用生产工具对各种原材料、半成品进行加工或处理,使之成为产品的方法,包括铸造、锻压、机械加工、热处理、焊接、装配、油漆等工艺类别。一方面,各个行业都有自己的通用数字工具和自动化设备,如CAPP(计算机辅助工艺过程设计系统)。另一方面,企业自主研发创新、经验总结的加工方法,可以成为企业自己的独门秘籍,比如毛坯制作、机械加工、热处理等各个环节先后顺序的优化,都可以提高生产效率、降低生产成本、提升产品质量,是一家工业企业最核心的竞争力。每家制造业企业都规定了产品的工艺路线、机器设备和加工模具的种类、品名及编号、检验方法等,是组织生产和工人进行生产操作的重要依据。过去20年中国制造业的工艺优化,主要聚焦于两个方面:引进国外的辅助工艺设计系统和培养有经验的专家。今天,则转向了数据智能。工艺优化的案例是攀钢集团。脱硫是钢铁生产过程中的一个重要环节,硫工艺的好坏可以拿来评判中国钢铁与德国钢铁的重要差距。由于硫化物会降低钢的韧性,所以工人师傅倾向于多加脱硫反应剂。但反应后产生的脱硫渣会带走大量金属料,每个炉次以220吨计,脱硫渣量均值为5吨,其中铁损占比约为40%--55%。假设脱硫剂的加入量降低10%,理论上可降低0.8--1kg/吨的钢料消耗。——第一步,构建仿真模型:基于历史数据与实时数据,构建脱硫预测模型。通过结合脱硫剂加入量、喷吹速率等十多个关键参数,模拟脱硫全过程,并配合参数优化模型,检验不同组参数的合理性及有效性。——第二步,参数寻优模型:结合机器学习与老师傅的经验,识别脱硫过程中的对脱硫结果影响最大的参数,包括钝化镁加入量、钝化石灰加入配比、平均流量、喷吹时长等,通过寻优模型识别参数间的最优关系。再回归到仿真模型中进行反复验证,最终得到最优参数:在满足脱硫效果的前提下,找到最小脱硫剂加入量的那组“配方”。——第三步,脱硫操作人员根据推送的推荐参数,动态调节脱硫剂的加入量,减少脱硫剂的消耗。对年产值400万吨钢的攀钢西昌钢钒基地来说,每年减少1700万元损失。生产工艺优化的解决方案,已经在钢铁、水泥、固废、化工、光伏等多个行业场景中得到实践。场景四:能耗优化能耗优化直接关乎“十四五规划和2035远景目标”中“双碳目标”的达成,已经成为流程制造企业发展的重中之重。《中国上市公司碳排放排行榜(2021)》显示,登榜的100家A股和港股上市的高碳排放公司,分布在石化、化工、建材(水泥)、钢铁、有色、造纸、电力、航空八大高耗能行业。八大重点高能耗行业中的六个,都属于“大制造业”。传统制造业的高端化、智能化、绿色化,提高了制造业对新技术的发展要求。水泥行业有着很高的煤耗和电耗,水泥的“两磨一烧”工艺(生料磨、回转窑与水泥粉磨),是保障水泥品质稳定的主要因素。2021年,海螺水泥作为亚洲最大的水泥熟料供应商,敏锐地洞察到传统的APC(生产优化系统)迭代能力跟不上业务需要,软件适应性不强、数字化沉淀和复用受限,造成全局优化能力不佳的结果,果断利用阿里云工业大脑AICS平台,聚焦于水泥产线的“两磨一烧”核心场景,完成能耗优化和工艺优化,分为下面几步。第一步:数据采集与清洗。结合工艺专家经验,水泥工业大脑首先将生产系统、控制系统、设备管理系统、能源管理系统中的海量数据进行提取,包括质检数据、DCS数据、环境数据等。同时对数据进行清洗,剔除噪音数据或无效数据,补充缺失数据,为下一步模型训练提供高质量的数据资产。第二步:模型搭建。采用先进的机器学习算法、神经网络算法,结合先进过程控制模型,对所收集到的多维度数据进行建模,真实还原水泥产线上的实际生产过程。并通过对大数据模型的参数进行调节,以实现从输入参数到输出参数的非线性映射关系。第三步:机器学习。通过采集六个月的历史数据,分析多达上百个变量之间的耦合关系,并对模型的输出进行预测,使风、煤、料的最佳组合范围可量化、可视化,达到同等产量熟料质量最好;同等质量情况下,产量最高;或是同质同产情况下,能耗最低。第四步:在线控制。最终生产线工艺参数的设定,会结合工艺参数范围、步长信息、工艺参数实时值等,由水泥工业大脑进行多变量综合分析,实时针对各工况的产量、质量、能耗多目标进行寻优,推荐一组最佳的工艺参数实时反写回分散控制系统,实现水泥核心生产过程的自动驾驶、无人值守。海螺水泥仅仅两个月时间,就实现了高自动控制的水泥工艺优化。在这个过程中,降低了2%--3%的能耗。对于水泥日产量1.2万吨的工厂来说,这一能耗节省非常可观。在后来的一段时间,逐步完成了全局优化的节能测试。结果显示,该系统的节能水平超过了国外知名厂商同类型软件的节能水平。以上自适应控制、工艺优化、能耗优化的案例能够清晰地看到,基本解决方案路径:收集历史数据--锁定关键参数--构建算法模型--用实时数据验证算法模型,并进行调优--输出动态参数推荐,或连接自动化控制系统。路径和方法都是一致的,难度就在于找到海量参数里的因果关系,并构建优质的算法模型,这两个节点的突破,则取决于数据智能的科学家和行业老师傅都具备卓越的专业能力和合作能力,同时需要一套专家知识系统。场景五:专家知识系统从以上场景,不难发现:在工业领域,传统经验知识的总结环节非常需要数据智能技术的加持。即便是有些制造业企业建立了数字化的专家系统,把专家经验进行文档累积,但是实际情况中,把数据经验输入到专家系统费时费力,每条记录的经验数据之间缺乏联系,仍然很难形成“数据资产”。在智能制造的时代,AI知识图谱作为人工智能的一个分支领域,具有“知识抽取”和“知识关联”的能力,值得被作为一个单独的解决方案提供给更多的制造业企业,在业内被称为专家知识系统。阿里云知识图谱系统,汇集各种应用场景下的数据,向知识图谱的开发人员以及运营管理人员,提供了可视化的工具平台,将留存在企业系统中的结构化、标注、规范、案例记录和人的经验等知识数据源转化为计算机可以识别的知识图谱数据,简化了传统知识累积的方法,有效提升了知识图谱的构建效率,降低了经验获取和传承的成本。电网等工业企业经常会在极端天气情况下紧急处理设备故障,利用知识图谱,把设备检修规程导则、以往故障报告和设备维修专家的知识数据,形成电力行业的专业知识图谱,开发基于知识图谱的故障研判算法引擎。故障发生时,拍照或语音问询,利用图像识别和自然语言处理能力,为故障抢修人员提供相关案例,提供引导式的修复方案,辅助执行,迅速提升故障处置能力,降低故障处理难度,缩短了故障处理时间。