其他
SIGAI推荐SIGAI资源汇总六折上雷明老师亲授课程XGBoost是当前炙手可热的算法,适合抽象数据的分析问题,在Kaggle等比赛中率获佳绩。市面上虽然有大量介绍XGBoost原理与使用的文章,但少有能清晰透彻的讲清其原理的。本文的目标是对XGBoost的原理进行系统而深入的讲解,帮助大家真正理解算法的原理。文章是对已经在清华达成出版社出版的《机器学习与应用》(雷明著)的补充。在这本书里系统的讲解了集成学习、bagging与随机森林、boosting与各类AdaBoost算法的原理及其实现、应用。AdaBoost与梯度提升,XGBoost的推导都需要使用广义加法模型,对此也有深入的介绍。理解XGBoost的原理需要决策树(尤其是分类与回归树),集成学习,广义加法模型,牛顿法等基础知识。其中,决策树在SIGAI之前的公众号文章“理解决策树”中已经做了深入的讲解。集成学习在之前的公众号文章“随机森林概述”,“大话AdaBoost算法”,“理解AdaBoost算法”中已经做了讲解。牛顿法在之前的公众号文章“理解梯度下降法”,“理解凸优化”,“理解牛顿法”中已经进行了介绍。如果读者对这些知识还不清楚,建议先阅读这些文章。