她们生命的最后时光,是在那个屋子里待了一百多天

北京4名社区干部商讨“驭民之策”:“他的软肋是儿子”

新疆大火烧了2小时多!疫情消防通道被焊死 造成十人死亡 哀默

孩子们,不要怕

路是通的,是他们不跑

生成图片,分享到微信朋友圈

自由微信安卓APP发布,立即下载! | 提交文章网址
查看原文

《自然》最新论文:转发假消息的人可能是“明知故犯”

peter东 腾云 2021-05-19


从保健品、特效药、养生秘籍到铺天盖地的假新闻...为什么有些标题看起来已经很“假”的内容,依然会被一次次分享转发?


在我们传统认知中,这可能是“无知”导致的,即人们在分享这些消息的时候,并没有意识到它可能存在“虚假风险”。


但最新的研究表明,我们可能需要扭转这一刻板认知。



文 | Peter东
腾云特约作者
集智俱乐部常驻作者


对于虚假信息传播,有一个常见的误区是:人们之所以分享虚假信息,是由于人们误以为他们分享的信息是准确的。于是“无知者无畏”,假消息被一次次转发分享,进而危及整个社会。

这听起来是再正确不过的解释。但事实真的如此吗?

来自麻省理工大学媒体实验室、斯隆商学院和加拿大里贾纳大学在内的研究者在3月17日的《自然》杂志发表了题为 Shifting attention to accuracy can reduce misinformation online 的文章。对这一传统认知提出了挑战。

01

人们分享内容的首要动机是?


研究人员以上千名美国网民为样本进行实验。

首先,他们在亚马逊机器人上招募了1015位受试者,向他们分别展示了36则来自社交媒体的真实新闻。为了保证平衡性,其中有一半的标题是虚假的,另一半的标题是准确的;一半偏向共和党,另一半偏向民主党。受试者被随机挑选,评价新闻的准确性,以及自己是否愿意分享这样的信息。

结果他们发现,不管是否倾向自己的党派,在被问及关于准确性的问题时,受试者都能很好的分辨标题真假。

但有趣的现象是,一旦人们处于分享状态时,这些标题是否符合受试者的政治立场,对他们是否分享消息的决定影响更大——远大于消息准确性的影响。

例如,面对与移民问题有关的明显的假新闻标题《500个移民篷车由于带着自杀夹克被捕》(Over 500 ‘Migrant Caravaners’ Arrested With Suicide Vests)时,研究者发现,虽然只有15.7%的共和党人认为这是准确的消息,但却有51.1%的共和党人表示他们会考虑分享这则消息。

简而言之,在分享按钮面前,即便人们知道消息可能存在虚假的可能,也更愿意分享与自己立场一致的消息,而非他们认为真实的消息。


所以,是不是说人们为了强化自己的立场、喜好,故意传播虚假消息?或者,是不是说相比于消息的真实准确性,人们更重视个人立场和喜好呢?

研究人员进行了第二轮调查。通过问卷,他们让受试者为消息的各种维度的因素的重要性评分,例如真实性、立场、喜好、令人惊讶的程度...

调查结果显示,此时,绝大部分受试者都认为,相比于立场、有趣、惊奇等因素,“消息的准确性”是才是更重要的。

看到这里,你可能也陷入了相同的困惑——两个调查结果互相矛盾吗?

为了弄清楚这个问题,研究者开始了第三轮实验:在接下来的测试中,受试者在进行相关测试之前,被要求先对没有政治倾向的消息的准确性进行判断。

例如,在转发每一条消息之前,其中一组受试者会被要求先对该消息的准确性进行评分,与另一组没有增加准确性评分的对照组相比,这一组被试者分享假标题的可能性要小得多。

也就是说,当所谓准确性启动效应开启之后,大家转发虚假消息的频率大大减小了——尤其是对那些与个人三观一致的虚假消息,被转发的几率大大降低。这样的干预手段对那些看起来最不靠谱的新闻标题效果最明显。



对2016年美国大选中推特上的大规模研究也发现了相同的趋势——当询问有哪些因素会影响分享的意图时,人们普遍指出信息的准确性十分重要,但事实却与之背道而驰。

人们为什么会愿意分享自己明知不准确的信息?

由此可见,激励人们分享的动机不仅仅是传播准确的信息,还有塑造自身人设、吸引朋友或陌生人的关注,因此在分享时起到关键作用的指标,与冷静被调查时的选择会出现显著差异。

进而,研究人员认为,人们转发虚假消息的主要原因,并非没有能力对信息的准确性做出判断,而是没有足够的注意

下图中,横轴代表新闻标题的准确性打分,纵轴代表干预对分享意图造成的影响。可以看出,准确性越差的新闻标题,如果在分享前对受试者进行提醒,分享意图的降幅越大。这进一步说明了人们会分享这些虚假信息不是由于人性的虚伪,而是由于注意力的有限。
之后,研究者在推特上,针对5000名用户进行实验,要求他们在发送消息前,先判定消息的准确性,之后评价其在24小时内分享信息的模式和他们日常的模式有什么区别。结果表明,这些用户对主流媒体的转发频率上升,而转发来自虚假信息泛滥的社交媒体的信息的概率大大降低。

这是令人兴奋的结论。这为治理虚假信息、优化社交媒体产品设计等方方面面提供了重要参考。


02

问题背后的复杂性


在中国的互联网世界中,养生、健康类在虚假信息中尤为突出,老年人、三四线城市居民,普遍被认为更容易被相关谣言攻陷。即便是对于生活在大城市、每天接触大量信息的年轻中产阶级来说,也常常会在涉及公共议题的互联网讨论中,受情绪驱使,成为假消息的传播者。

无论是消除数字鸿沟,还是促进互联网世界的理性讨论,上述研究给我们的启发是,我们首先需要了解是什么因素决定了人们的分享行为。

虚假信息的提供者在操纵人类情感方面非常出色,但请注意,我们依然不能简单的认为基于美国人的调查就一定符合中国国情。即便社交媒体似乎打破了地域限制,但地域间差异依然存在。


例如,借用传染病学的模型,《自然人类行为》去年10月的一篇论文对信息流行病(infodemics)开展了研究,该研究对各地区社交网络用户的发布的新冠相关信息进行汇总、打分,给出代表该地区的信息流行病的严重程度的“信息流行病风险指数(Infodemic Risk Index )”。

该研究表明,在不同地域中,信息流行病的严重程度的变化是独立的,这和社会经济发展程度、单日新增病例没有相关性。这打破了人们的传统认知。


由此可见,与虚假信息作斗争需要一个全面的反应,这远远超出了计算机研究的范围,包括教育学、心理学、新闻学和社会学等诸多学科。也正因如此,此类研究应该被划入复杂性研究的范畴。


圣菲研究所应用复杂性研究员Garland就曾指出,首先我们应该把信息的传播环境看做一个“生态系统”,关注信息所具有的多维度(例如信息包含的情绪、信息准确性等多个评价标准),深入理解那些假消息的“需求方”(即潜在的受众),进而才能够更巧妙地遏制虚假信息,而不是束手无策。


其次,在假消息的“供给方面”,计算科学家应该和社会学家合作,理解信息传播的过程(例如超级传播者,越过临界点之后的病毒式传播)。同时,自动化的工具可以用来找到虚假信息传播过程中的关键个体这样的算法可在虚假信息传播之前发现和隔离它们,或者至少减轻它们的影响


具体来看,这类研究有六个目标:


一是大范围地检测虚假信息,例如识别Deep Fake合成的视频,找出机器人账户,算法生成的虚假信息等;

二是量化虚假信息的影响范围,包括长期的和次生伤害;

三是提供数据访问的“基础设施”,从而可以让更多的研究者,能够获得信息传播的数据;

四是探讨互联网背景下新的伦理规范,例如定义何为公共空间,隐私的范围多广;

五是找出合适的教育干预手段,提升大众对虚假信息的免疫力;

六是培养专业人士,让他们具有持续对抗虚假信息的技能和工具。


如果你正在关注该领域的研究,这或许会为你带来一些方向性的启发。


总之,信息的传播过程就像任何其他复杂系统一样,注定无法通过简单、单一的方式来进行,解决这个问题需要与系统进行互动,同时尊重对权利、伤害和正义的伦理关切。这需要专业人士,来平衡量化研究对海量数据的需求与保护用户隐私,避免伤害用户体验之间的权衡。

而要想真正了解不同文化背景下虚假信息传播的不同,需要构建多语言数据库,采用自然语音处理技术,来自动化地收集分析数据,而这也需要学术圈和产业界的通力合作。


-----------------  往期回顾  -----------------


点击关注腾云,获取更多精彩内容

喜欢本文?快点亮右下角“在看”图标吧↘

    文章有问题?点此查看未经处理的缓存