查看原文
其他

2017年大数据的十大发展趋势

2016-12-28 天善智能 天善智能


专家预计,机器学习、预测分析、物联网和边缘计算将对2017年及以后的大数据项目产生深远影响。


1.开放源码

Apache Hadoop、Spark等开源应用程序已经在大数据领域占据了主导地位。一项调查发现,预计到今年年底,近60%企业的Hadoop集群将投入生产。佛瑞斯特的研究显示,Hadoop的使用率正以每年32.9%的速度增长。


专家表示,2017年许多企业将继续扩大他们的Hadoop和NoSQL技术应用,并寻找方法来提高处理大数据的速度。


2.内存技术

很多公司正试图加速大数据处理过程,它们采用的一项技术就是内存技术。在传统数据库中,数据存储在配备有硬盘驱动器或固态驱动器(SSD)的存储系统中。而现代内存技术将数据存储在RAM中,这样大大提高了数据存储的速度。佛瑞斯特研究的报告中预测,内存数据架构每年将增长29.2%。


目前,有很多企业提供内存数据库技术,最著名的有SAP、IBM和Pivotal。


3.机器学习


随着大数据分析能力的不断提高,很多企业开始投资机器学习(ML)。机器学习是人工智能的一项分支,允许计算机在没有明确编码的情况下学习新事物。换句话说,就是分析大数据以得出结论。


高德纳咨询公司(Gartner)称,机器学习是2017年十大战略技术趋势之一。它指出,当今最先进的机器学习和人工智能系统正在超越传统的基于规则的算法,创建出能够理解、学习、预测、适应,甚至可以自主操作的系统。


4.预测分析


预测分析与机器学习密切相关,事实上ML系统通常为预测分析软件提供动力。在早期大数据分析中,企业通过审查他们的数据来发现过去发生了什么,后来他们开始使用分析工具来调查这些事情发生的原因。预测分析则更进一步,使用大数据分析预测未来会发生什么。


普华永道(PwC)2016年调查显示,目前仅为29%的公司使用预测分析技术,这个数量并不多。同时,许多供应商最近都推出了预测分析工具。随着企业越来越意识到预测分析工具的强大功能,这一数字在未来几年可能会出现激增。


5.智能 app


企业使用机器学习和AI技术的另一种方式是创建智能应用程序。这些应用程序采用大数据分析技术来分析用户过往的行为,为用户提供个性化的服务。推荐引擎就是一个大家非常熟悉的例子。


在2017年十大战略技术趋势列表中,高德纳公司把智能应用列在了第二位。高德纳公司副总裁大卫·希尔里(David Cearley)说:“未来10年,几乎每个app,每个应用程序和服务都将一定程度上应用AI。


6.智能安保


随着这些新设备和应用程序上线,许多公司需要新的技术和系统,才能够处理和感知来自物联网的大量数据。


许多企业也将大数据分析纳入安全战略。企业的安全日志数据提供了以往未遂的网络攻击信息,企业可以利用这些数据来预测并防止未来可能发生的攻击,以减少攻击造成的损失。一些公司正将其安全信息和事件管理软件(SIEM)与大数据平台(如Hadoop)结合起来。还有一些公司选择向能够提供大数据分析能力产品的公司求助。


7.物联网


物联网也可能对大数据产生相当大的影响。根据IDC 2016年9月的报告,“31.4%的受访公司推出了物联网解决方案,另有43%希望在未来12个月内部署物联网解决方案。”


8.边缘计算


边缘计算是一种可以帮助公司处理物联网大数据的新技术。在边缘计算中,大数据分析非常接近物联网设备和传感器,而不是数据中心或云。对于企业来说,这种方式的优点显而易见。因为在网络上流动的数据较少,可以提高网络性能并节省云计算成本。它还允许公司删除过期的和无价值的物联网数据,从而降低存储和基础架构成本。边缘计算还可以加快分析过程,使决策者能够更快地洞察情况并采取行动。


9.高薪职业


对于IT工作者来说,大数据的发展意味着大数据技能人才的高需求。IDC称,“到2018年,美国将有181,000个深度分析岗位,是数据管理和数据解读相关技能岗位数量的五倍。”

由于人才缺口过大,罗伯特·哈夫技术公司预测,到2017年数据科学家的平均薪资将增长6.5%,年薪在116,000美元到163,500美元之间(当然这是美国的标准,中国国内目前尚未统计)。同样,明年大数据工程师的薪资也将增长5.8%,在135,000美元到196,000美元之间。


10.自助服务


由于聘请高级专家的成本过高,许多公司开始转向数据分析工具。IDC先前预测,“视觉数据发现工具的增长速度将比其他商业智能(BI)市场快2.5倍,到2018年,所有企业都将投资终端用户自助服务。


一些大数据供应商已经推出了具有“自助服务”能力的大数据分析工具,专家预计这种趋势将持续到2017年及以后。 数据分析过程中,信息技术的参与将越来越少,大数据分析将越来越多地融入到所有部门工作人员的工作方式之中。


(全文完)


【经典案例与市场研究】

中国产品向世界 Say Hi ! 铂金智慧 CEO 郑远(阅读量:1400+)

深入解读民生银行阿拉丁大数据生态圈如何养成 (阅读量:3000+)

深入分析 BI 数据可视化市场 SaaS 模式 (阅读量:1700+)

这篇文章才是对敏捷BI的客观理解 (阅读量:1600+)

Gartner 2016商业智能与分析平台魔力象限 (阅读量:1500+)


【大数据】

大数据体系必备术语知多少? (阅读量:3000+)

大数据告诉你,为什么你逛个草榴就贷不到款了! (阅读量:4300+)

从ZARA、HM 看大数据营销的认识误区 (阅读量:1200+)

携程大数据实践:高并发应用架构及推荐系统案例  (阅读量:1200+)

互联网金融与大数据风控相结合的九大维度 (阅读量:1900+)


【商业智能 BI】

五大需求黑洞,吞噬你的 BI 项目 (阅读量:2700+)

OLAP 解析与发展方向 (阅读量:2000+)

阿里云高级技术专家李金波:我们该如何做好一个数据仓库? (阅读量:2300+)

零售行业 BI 建设关键两步做好就行 (阅读量:1100+)

微软 Power BI 创建 AARRR 报表之新增获客 (阅读量:1100+)

一脉相承,ETL和BI设计的准则 (阅读量:1100+)


【数据分析与实战】

8 种热图用法揭示用户的网站浏览行为 (阅读量:1200+)

数据产品经理的工作类型和能力要求  ( 阅读量:1800+)

数据分析|常用的数据分析方法论和数据分析法   (阅读量:1600+)

数据分析师的能力和工具体系 (阅读量:2000+)

人人都会用到的数据可视化之常用图表类型 (阅读量:1300+)

扒一扒中国女排夺冠幕后数据分析师袁灵犀和数据分析软件 (阅读量:8800+)

想成为数据科学家?看看他们正在使用的十种程序语言和工具 (阅读量:2000+)


天善智能 www.hellobi.com 是一个专注于商业智能BI、数据分析、数据挖掘和大数据技术的垂直社区平台,拥有 4 万+名注册用户,90% 以上来自全国各地近 3 万家甲方企业。平台管理各种社群 300 余个,所有用户均来自数据类相关的一线技术开发、Tech Lead、PM、架构师、VP、CEO,是国内最大的数据领域垂直社区。


每周四晚上 8:30 视频同步直播行业和大数据技术交流,每个月北上广深以及全国其它各个城市开展 200-500人规模的大数据沙龙活动。


>>  点击查看近期活动  <<


关注天善智能,关注大家都在关注的大数据社区


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存