黑洞的前世今缘
The following article is from 物理与工程 Author 席特 鲁同所 等
1 什么是黑洞
2 提出的背景
2.1 两种学说:
2.2 开普勒三大定律
2.3 万有引力定律
2.4 三大宇宙速度
2.5 普朗克的黑体辐射
2.6 黑洞概念的出现
3 黑洞的形成与演化过程
4 黑洞的性质
4.1 黑洞的主要特征
4.2 黑洞无毛定理
4.3 霍金辐射及信息疑难
4.4 黑洞的热力学性质
4.5 黑洞的负比热
4.6 黑洞的吸积、蒸发
5 黑洞的探测
6 黑洞的分类
6.1 按照质量大小分类
6.2 按照物理性质分类
7 白洞和虫洞预言
7.1 白洞
7.2 虫洞
8 研究黑洞的意义
参考文献
[1] ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a Binary black hole merger[J]. Phys.rev.lett, 2016, 116(6): 061102.
[2] HARRY G M. Advanced LIGO: The next generation of gravitational wave detectors[J]. Classical & Quantum Gravity, 2010, 27(8): 084006.
[3] ACERNESE F, AGATHOS M, AGATSUMA K, et al. Advanced Virgo: A second-generation interferometric gravitational wave detector[J]. Classical & Quantum Gravity, 2014, 32(2).
[4] ABBOTT B P, ABBOTT R, ABBOTT T D, et al. GW151226: Observation of gravitational waves from a 22-solar-mass Binary black hole Coalescence.[J]. Phys.rev.lett, 2016, 116(24): 241103.
[5] ABBOTT B P, ABBOTT R, ABBOTT T D, et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2.[J]. Phys.rev.lett, 2017, 118(22): 221101.
[6] ABBOTT B P, ABBOTT R, ABBOTT T D, et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence.[J]. Phys.rev.lett, 2017, 119(14): 141101.
[7] SOARESSANTOS M, HOLZ D E, ANNIS J, et al. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Dark Energy Camera Discovery of the Optical Counterpart[J]. Astrophysical Journal, 2017, 848(2): L16.
[8] RINDLER W. Visual horizons in world models[J]. General Relativity & Gravitation, 2002, 34(1): 133-153.
[9] MICHELL J. On the means of discovering the distance, magnitude, & c. of the fixed stars, in consequence of the diminution of the velocity of their light, in case such a diminution should be found to take place in any of them, and such other data should be procured fro[J]. Philosophical Transactions of the Royal Society of London, 2015, 74: 35-57.
[10] LINDE A, LINDE D, MEZHLUMIAN A. From the big bang theory to the theory of a stationary universe.[J]. Physical Review D Particles & Fields, 1994, 49(4): 1783.
[11] SCHWARZSCHILD K. Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie[M]//Gesammelte Werke/Collected Works. 1992: 189-196.
[12] PENROSE R. “Golden oldie”: Gravitational collapse: The role of general relativity[J]. General Relativity & Gravitation, 2002, 34(7): 1141-1165.
[13] ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a Binary Black Hole Merger[J]. Phys.rev.lett, 2016, 116(6): 061102.
[14] 霍金.时间简史:普及版[M]. 长沙:湖南科学技术出版社, 2009.
[15] 欧阳桦. 基于CCD星敏感器的星图模拟和导航星提取的方法研究[D].武汉:华中科技大学,2005.
[16] 徐仁新. 天体物理导论[M]. 北京:北京大学出版社, 2006.
[17] 李焱. 恒星结构演化引论[M]. 北京:北京大学出版社, 2014.
[18] CARTER B. Axisymmetric Black Hole Has Only Two Degrees of Freedom[J]. Physical Review Letters, 1971, 26(6): 331-333.
[19] HAWKING S W. Black hole explosions?[J]. Nature, 1974, 248(5443): 30-31.
[20] HAWKING S W. Breakdown of predictability in gravitational collapse[J]. Physical Review D, 1976, 14(10): 2460-2473.
[21] HAWKING S W. Particle Creation by Black Holes[J]. Communications in Mathematical Physics, 1976, 46(2): 206-206.
[22] 赵峥. 黑洞的热性质与时空奇异性[M]. 北京:北京师范大学出版社, 1999.
[23] THORNE K S. Disk-Accretion onto a Black Hole. II. Evolution of the hole[J]. Astrophysical Journal, 1974, 191(2): 507-520.
[24] ROBINSON D C. Classification of black holes with electromagnetic fields[J]. Physical Review D Particles & Fields, 1974, 10(10): 458-460.
[25] FAULKNER J, HOYLE F, NARLIKAR J V. On the Behavior of Radiation Near Massive Bodies [J]. Astrophysical Journal, 1964, 140(3): 1100.
[26] COLEMAN S, LEE K. Wormholes made without massless matter fields[J]. Nuclear Physics, 1990, 329(2): 387-409.
本文经授权转载自《物理与工程》微信公众号
1.如果有来生,我还会毫不犹豫地选择物理系 | 曹则贤——科学讲坛