查看原文
其他

教学研讨| 7.2 复数的四则运算(第1课时)(2019版新教材)

请关注 阳光备课 2023-02-05

      教学研讨所选素材大多来自国家教育资源公共服务平台、人教网等权威媒体,由网友推荐,阳光备课整合,仅供各位老师学习和研究,各部分版权归原作者所有。 

▍来源:网络

推荐:

数学教师必备 | 手机版《高中数学教学手册》 




研讨素材一




一、教材分析

教材截图

(考虑到研讨时部分教师未带有2019版课本,这里对教材截个图)





教材分析:

1.内容

 复数的加减运算及其几何意义,复数的乘除运算.

 本单元的知识结构:

 本单元建议用2课时:

第一课时,复数的加减运算及其几何意义;

第二课时,复数的乘、除运算.

  2.内容解析

 引入一类代数对象,就要研究它的运算.本节主要讨论复数的加法、乘法运算,并从它们的逆运算角度给出复数减法、除法的运算法则,本节还讨论复数加、减运算的几何意义.通过本节的学习,侧重提升学生的数学运算、直观想象素养.

 复数的四则运算法则都是规定的,但这种规定是有“依据”的,也是有层次的.第一层次,复数的加法和乘法法则是直接规定的,规定的“依据”就是在复数概念引入时,得到的“规则”, 即实数系扩充到复数系后,我们希望“数集扩充后,在复数集中规定的加法运算、乘法运算,与原来在实数集中规定的加法运算、乘法运算协调一致,并且加法和乘法都满足交换律和结合律,乘法对加法满足分配律”. 教学时应引导学生体会复数运算法则和运算律规定的合理性. 以此为载体,教给学生研究数学问题的思路和方法. 第二层次,复数的减法运算和除法运算法则,是通过复数的减法运算是加法运算的逆运算,除法运算是乘法运算的逆运算得到的,为什么可以看成逆运算,是类比了实数减法是加法的逆运算,除法是乘法的逆运算得到的.在教学过程中,要让学生感受转化与化归的数学思想,感受加减运算和乘除运算中辩证统一的思想,进一步体会类比是研究数学问题的重要方法,

 教材在规定了复数的四则运算后,让学生分别与多项式的运算法则进行比较,发现两者的共性.目的是通过类比,让学生借助多项式的四则运算法则去进行复数的四则运算,从而避免了不必要的死记硬背.如:复数a+bi中实部和虚部a,b看作常数,i看作“变元”,从而将复数a+bi看成是“一次二项式”,进而就容易发现两个复数相加与两个 “一次二项式”相加——合并同类项一致.这样,得到两个复数相加与两个多项式相加类似,可以看成是“合并同类项”. 通过这种比较,加深理解,淡化记忆,提升学生的数学运算素养.

 复数加法和减法的几何意义是借助复数的几何意义以及向量加法和减法的几何意义得到的,主要体现在三方面:一是复数与复平面内以原点为起点的平面向量一一对应;二是向量加法和减法的坐标形式及其几何意义;三是复数的加法和减法的运算法则.教学中要让学生充分感受数形结合以及类比的数学思想,感受普遍联系的唯物主义观点,提升学生的直观想象素养.

 综上所述,本单元的教学重点是:复数代数形式的加、减、乘、除的运算法则及其运算律,复数加、减运算的几何意义.

 二、目标和目标解析

  1. 目标

 (1)掌握复数代数表示的四则运算的运算法则和运算律,体会转化与化归的数学思想方法,发展数学运算素养.

 (2)发现复数的四则运算和多项式的四则运算的共性,体会类比的思想方法.

 (3)了解复数加、减运算的几何意义,体会数形结合的思想方法,发展直观想象素养.

 (4)了解在复数集中求解一元二次方程的方法.

  2. 目标解析

 达成目标(1)的标志是:学生能够依据数系扩充的规则,自主探索,合理地规定复数加法和乘法的运算法则,能够通过减法和加法互为逆运算,除法和乘法互为逆运算,得到减法和除法的运算法则,并在其中体会转化与化归的思想方法.学生能够利用复数的四则运算法则,进行简单的复数代数表示的运算.

 达成目标(2)的标志是:学生能够通过类比发现复数的加减运算和乘除运算与多项式的加减运算和乘除运算的“共性”,得到“两个复数相加(减)或相乘(除),类似于两个多项式相加(减)或相乘(除)”.

 达成目标(3)的标志是:学生能够通过复数与平面向量一一对应的关系、平面向量加法和减法的几何意义以及复数加减运算法则,得出复数加减运算的几何意义.

 达成目标(4)的标志是:学生能够利用复数的四则运算法则,在复数集范围内求解一元二次方程,得出复数集内一元二次方程的求根公式.

  三、教学问题诊断分析

 学生在初中已经学习过多项式的四则运算,在“数系的扩充和复数的概念”一节已经了解了数系扩充的规则,即:“数集扩充后,在实数集中规定的加法运算、乘法运算,与原来在有理数集中规定的加法运算、乘法运算协调一致,并且加法和乘法都满足交换律和结合律,乘法对加法满足分配律”.在教师的引导下,应该能够得出复数加法运算和乘法运算运算法则的“合理”规定.因前一节刚刚学习了复数的几何意义,学生对复数与复平面上的点以及平面向量三者之间一一对应的关系比较熟悉,所以,较易得出复数加法的几何意义,同时类比加法的几何意义,能够得出复数减法的几何意义.

 由于减法运算和除法运算是分别通过加法运算和乘法运算的逆运算得到的,而学生对逆运算会感觉不好理解,学习中可能会存在一些困难,所以本单元的教学难点是:复数减法和除法的运算法则.

更多:https://www.pep.com.cn/gzsx/xrjbgzsx/xrjgzwd/202005/t20200511_1951177.html

教学重点、难点

重点:复数代数形式的加、减、乘、除的运算法则及其运算律,复数加、减运算的几何意义.

难点:复数减法和除法的运算法则.


五、数学学科素养


逻辑推理、数学运算、直观想象




第1课时




7.2.1 复数的加、减运算及其几何意义

  (一)课时教学内容

 复数的加减运算及其几何意义.

  (二)课时教学目标

 1.掌握复数加法和减法运算的运算法则及其运算律.

 2.了解复数加法运算和减法运算的几何意义.

  (三)教学重点与难点

 教学重点:复数加法运算的运算法则及其运算律,复数加、减运算的几何意义.

 教学难点:复数减法运算的运算法则.

  (四)教学过程:见《研讨素材二》





研讨素材二



【请点击图片放大,左右动阅读】

















温馨提示:

       需要课件的同事,请关注阳光备课,对话框回复“中学数学”,内容会不断更新






研讨素材三




数系的扩充和复数的概念
3.1.2复数的几何意义
3.2.1复数代数形式的加减运算及其几何意义
3.2.2复数代数形式的乘除运算
部级优课·视频|人教版高中数学选修2-2(2018)
部级优课·视频|人教版高中数学选修2-2(2017)






四、教材习题答案




    根据文末留言的要求,考虑到高一学生预习的需要,这里提供教材的练习、习题及复习参考题等等习题答案,可能有错漏,仅供各位学生朋友参考。








END








-----全文到此为止。整理不易,如果喜欢,请点下“在看”和转发到朋友圈。 

 



 特别推荐(点下列标题进入)

A.数学教师必备 | 手机版《高中数学教学手册》,请收藏!

1.【教案·课件】高中数学全套教案·课件(必修选修的每一节课);2.【课堂实录】高中数学全套部级优课(必修·选修的每一节课);3.课本答案 | 高中数学教材必修2练习、习题、复习参考题题目答案,4.课本答案 | 高中数学教材必修3练习、习题、复习参考题题目答案,5.课本答案 | 高中数学教材必修4练习、习题、复习参考题题目答案,6.课本答案 | 高中数学教材必修5练习、习题、复习参考题题目答案,7.课本答案 | 高中数学教材选修2-2练习、习题、复习参考题题目答案,8.课本答案 | 高中数学教材选修2-3练习、习题、复习参考题题目答案。9.【家长辅导】人教网·辅导孩子学数学·系列(1-6年级的每一节课);10.【课堂实录】小学数学全套部级优课(1-6年级的每一节课);11.课本答案 | 人教版数学1-2年级教材下册做一做及课后习题答案,
12.课本答案 | 人教版数学3-4年级教材下册做一做及课后习题答案,13.课本答案 | 人教版数学5-6年级教材下册做一做及课后习题答案,

14.【学生课本·教师用书】13个学科67家出版社直接下载

15.人教版教科书、教师用书电子版来啦!快快下载;



免责声明


【内容由网上搜索而来,由阳光备课整合,各部分版权归原作者所有,在此向作者致谢!摘录、转载,是想为经济欠发达地区教师提高业务水平做点事,仅此而已,如有侵权,请联系删除,谢谢!】


点个"赞",让我知道你“在看”        

 点击阅读原文↓更多! 



您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存