比翱工程实验室丨优化具有复杂颈部形状的超材料以改善飞机机舱噪音
Tenon Charly Konea,Sebastian Ghineta,Raymond Pannetonb,Anant Grewala
a:加拿大国家研究委员会,飞行研究实验室
b:希尔布鲁克大学声学研究所(GAUS)
创新研究
本研究提出了一种快速可靠的方法来优化具有复杂形状颈部的声学超材料,也提出了一种基于传递矩阵法预测超材料声学特性的快速可靠方法。研究主要目标是开发和提出一种谐振器颈部,允许在相同的HR腔尺寸下提高声学性能。开发的超材料解决方案纳入现有飞机的隔热以及隔声材料研制中,以降低和改善机舱噪音。此外,所提出的解决方案不仅针对声学性能进行优化,而且还针对低重量和低制造成本进行了优化。因此,面临的挑战是选择一个概念,通过多变量优化,将产生优良的降噪改进,并迅速达到集成机载飞机的技术准备水平。该方法基于HR颈优化设计参数的拉丁超立方采样(LHS)方法建立了Kriging型元模型。此外,最佳颈部设计是使用开源软件 Dakota[10]的多目标遗传算法(MOGA)[8, 9]开发的。传递矩阵法(TMM)[11, 12] 已被用于评估共振频率和声音传输损耗 (STL) 的目标函数。
1. Kuntz,H. L., Gatineau, R. J., Prydz, R. A. & Balena, F. J. Development andtesting of cabin sidewall acoustic resonators for the reduction of cabin tonelevels in propfan-powered aircraft, NASA Report 4388 (1991).
2. DoutresO., Atalla N. & Osman H. Transfer matrix modeling and experimentalvalidation of cellular porous material with resonant inclusions, J. Acoust.Soc. Am. 137(6), 3502-3513 (2015).
3. SelametA., Xu M. B., and Lee I.-J. Helmholtz resonator lined with absorbing material,JASA, 117(2), 725-733 (2005).
4. GourdonE. & SavadKoohi A. T. Nonlinear Structuring of Helmholtz Resonators forIncreasing the Range of Sound Absorption, Proceedings of Euro-Noise (2015).
5. ParkS.-H., Acoustic properties of micro-perforated panel absorbers backed byHelmholtz resonators for the improvement of low-frequency sound absorption,Journal of Sound and Vibration 332(20), 4895-4911 (2013).
6. Cai C.,Mak C-M. & Shi X., An extended neck versus a spiral neck of the Helmholtzresonator, Applied Acoustics, 115, 74-80 (2017).
7. Ghinet,S., Bouche, P., Padois, T, Pires L., Doutres O., Kone T. C., Triki K.,Abdelkader F. Panneton R. & Atalla N. Experimental validation of acousticmetamaterials noise attenuation performance for aircraft cabin applications.Proceedings of INTER-NOISE 20, pp 222-232, Seoul, Korea,Aug. 23-26 (2020).
8. Deb K.,Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley &Sons, Hoboken, NJ07030, USA (2001).
9. KurdiM., Beran P., Stanford B. & Snyder S. Optimal Actuation of NonlinearResonant Systems, J. Struct. Multidisc. Optimal. , 41 (1), 65-86 (2009).
10.Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization,Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis:Version 6.13 User’s Manual, SAND2020-12495 Unlimited Release (2020).
11. Kone,T. C., Ghinet, S., Dupont, T., Panneton, R., Anant, G. l & WickramasingheV. Characterization of the acoustic properties of complex shape metamaterials.In Proceedings of 2020 International Congress on Noise Control Engineering,INTER-NOISE 2020, 23-26 August 2020 Seoul, South Korea.
12.Verdiere K., Panneton R., Elkoun S., Dupont T., and Leclaire P., Transfermatrix method applied to the parallel assembly of sound absorbing materials,JASA, 134, 4648-4658 (2013).
13.Burrage K., Burrage P., Donovan D., and Thompson B. Populations of models,experimental designs and coverage of parameter space by Latin hypercube andorthogonal sampling, Procedia Computer Science, 51, 1762–1771 (2015).
14. CioppaT. M. and Lucas T. W. Efficient nearly orthogonal and space-filling Latinhypercubes, Technometrics, 49(1), 45-55 (2007).
15. JosephV. R. & Hung Y. Orthogonal-maximin Latin hypercube designs, StatisticaSinica, 1, 171-186 (2008).
16. KoneT. C. Etude numérique de l'identification des sources acoustiques d'une pale deventilateur (Numerical study of the identification of the acoustic sources of afan blade), thesis, Universte de Sherbrooke, QC, Canada, 2016.
17. KrigeD. A statistical approach to some mine valuation and allied problems on theWitwatersrand, University of the Witwatersrand, Dissertation, 1951.
18. SacksJ., Welch W. J., Mitchell T. J., & Wynn H. P. Design and Analysis ofComputer Experiments. In Statistical Science 4-4, S. 409-435 (1989).
19.Simpson T. W. Poplinski J. D, Koch P. N., & Allen J. K., Metamodels forcomputer-based engineering design: survey and recommendations, Engineering WithComputers, 17(2), 129-150(2001).
20. RennenG. Subset selection from large datasets for kriging modeling, Structural andMultidisciplinary Optimization, 38(6), 545–569 (2009).
21.Pistone G. & Vicario G. Comparing and generating Latin hypercube designs inKriging models, AStA Advances in Statistical Analysis, 94, (4), 353–366 (2010).
22. SenO., Gaul N. J., Choi K. K., Jacobs G., & Udaykumar H. S. Evaluation ofkriging based surrogate models constructed from mesoscale computations of shockinteraction with particles, Journal of Computational Physics, 336, 235–260(2017).
23.Dubreuil S., Bartoli N., Gogu C., Lefebvre T., & Colomer J. M., Extremevalue oriented random field discretization based on an hybrid polynomial chaosexpansion - Kriging approach, Computer Methods in Applied Mechanics andEngineering, 332, 540–571 (2018).
24. CousinA., Maatouk H., and Rullière D. Kriging of financial term-structures, EuropeanJournal of Operational Research, 255(2), 631–648, (2016).
25. MukeshR., Lingadurai K. & Selvakumar U. Airfoil Shape Optimization based onSurrogate Model. J. Inst. Eng. India Ser. C 99, 1-8 (2018).
26.Jouhaud J.-C. , Sagaut P. & Labeyrie B. A Kriging Approach forCFD/Wind-Tunnel Data Comparison,J. Fluids Eng. 128(4): 847-855 (2006).
27.Champoux Y. & Allard J., Dynamic tortuosity and bulk modulus inair-saturated porous media, Journal of Applied Physics, 70(4), 1975-1979(1991).
28.Munjal, M. L., Galaitsis, A. G. & Ver, I. L. Passive Silencers, Noise andVibration Control Engineering (eds I.L. Ver and L.L. Beranek), John Wiley &Sons, Inc., New York, 2006.