比翱工程实验室丨基于复杂腔体亥姆霍兹谐振器的飞机机舱多纯音低频噪声控制
Tenon Charly Konea,Sebastian Ghineta,Raymond Pannetonb,Thomas Dupontc,Anant Grewala
来源:interNoise 2021
导读
在低频范围内同时控制多个纯音频率的噪声对航空航天、地面运输和建筑行业来说是一个挑战。在过去的几十年中,文献中已经提出了基于声学超材料设计的各种低频噪声控制解决方案。与传统隔音材料相比,所提出的技术显示出良好的声学性能,被认为是一种很好的解决方案。以前,将分层多孔材料与嵌入式亥姆霍兹谐振器相结合的方法在多频率下调谐时显示出巨大的潜力。在这些工作的扩展,这篇文章提出了一种超材料,由一个结构亥姆霍兹谐振器(HR)集成在玻璃棉基质中,以改善声音传输损失(STL),并同时控制多个纯音频率的噪声。HR是一个圆柱形空腔,具有内部结构化颈部。结构化的颈部由一个主要的圆柱形孔隙组成,沿其轴支撑周期性空腔。所提出的超材料的分析建模使用串联和并联的传递矩阵方法(TMM)。目前的研究表明,这种类型的超材料可以控制多纯音噪声并将传输损耗峰值移向低频。据观察,使用开发的TMM方法计算的STL与通过有限元方法(FEM)建模的结果非常一致。
创新研究
结论
1. Oleson R & Patrick H. Small aircraft propellernoise with ducted propeller. AIAA-98-2284, In 4th AIAA/CEASaeroacoustics conference, 02-04 June 1998, Toulouse, France.
2. Marte J. E & Kurtz D. W. A review of aerodynamicnoise from propellers, rotors, and lift fans, NASA CR 107568, TechnicalReport 32-1462, 1970.
3. AnwarM. N M., Vieira A., Snellen M., Dick G. S. & Veldhuis L. L. M. Experimentalcharacterization of noise radiation from a ducted propeller of an unmannedaerial vehicle. International Journal of Aeroacoustics, 18, 1-20 (2019).
4. OhadGur & Aviv Design of Quiet Propeller for an Electric Mini Unmanned AirVehicle. Journal of Propulsion and Power, 25 (3), 717-728 (2009).
5. PaganoA., Mattia B., Damiano C. & Luigi F. Tonal and Broadband Noise Calculationsfor Aeroacoustic Optimization of a Pusher Propeller. Journal of Aircraft,47(3), 835-848 (2010).
6. Kone T.C. Etude numérique de l'identification des sources acoustiques d'une pale deventilateur (Numerical study of the identification of the acoustic sources of afan blade), thesis, Universite de Sherbrooke, QC, Canada, 2016.
7. SeongW. C., Yu S. K. & Ji Suk L. Design and Test of Small Scale Ducted-PropAerial Vehicle. AIAA 2009-1439, 47th AIAA Aerospace Sciences Meeting IncludingThe New Horizons Forum and Aerospace Exposition, 5 -8 January 2009, Orlando,Florida.
8. SeyitTürkmen Koç, Serdar Yılmaz, Duygu Erdem & Kavsaoğlu M. S. Experimental Investigationof a Ducted Propeller. 4th European conference for aerospace science (EUCASS),4-8 July, 2011, Saint Petersburg.
9. GeraldW. B., John W. P. & Alan S. H. Advanced turbofan duct liner concepts.NASA-CR 1999209002, 1998.
10. HughesI. J. & Dowling A. P. The Absorption of Sound by Perforated Linings.Journal of Fluid Mechanics, 218, 299-335 (1990).
11. JingX. D., Wang X. Y. & Sun X. F. Broadband acoustic liner based on themechanism of multiple cavity resonance. AIAA Journal, 45, 2429-2437 (2007).
12. BeckB. S. Grazing incidence modeling of a metamaterial-inspired dual-resonanceacoustic liner.In Proceedings of SPIE, Health Monitoring of Structural andBiological Systems 2014, 10-13Mars 2014, San Diego, CA, USA.
13. BeckB. S., Schiller N. H. & Jones M G. Impedance assessment of a dual-resonanceacoustic liner. Appl. Acoustics, 93, 15-22 (2015).
14.Auregan Y. & Leroux M. Experimental evidence of an instability over animpedance wall in a duct with ow, International Journal of Acoustics andVibration 317(3), 432-439 (2008).
15.Auregan Y., Farooqui M. & Groby J.-P. Low frequency sound attenuation in aflow duct using a thin slow sound material, The Journal of the Acoustical Societyof American, 39 (EL149) (2016).
16.García-Chocano V. M., Graciá-Salgado R., Torrent D., Cervera F., &Sánchez-Dehesa J., Quasitwo-dimensional acoustic metamaterial with negativebulk modulus, Physical Review, B85,184102 (2012).
17.Leclaire P., Dupont T., Panneton R. & Umnova O. Acoustical properties ofair-saturated porous material with periodically distributed dead-end pores, TheJournal of the Acoustical Society of America 137(4), 1772-1782 (2015).
18. T.Dupont, Leclaire P., Panneton R.& Umnova O., A microstructure materialdesign for low frequency sound absorption, Applied Acoustics, 136(4), 86-93(2018).
19. KoneT. C., Panneton R. & Dupont T. Thermo-Visco-Acoustic Metamaterials to DampAcoustic Modes in a Complex Geometry”, 26th International Congress on Sound andVibration, 7-11 July 2019, Montreal, Canada.
20. KoneT. C., Panneton R., Dupont T. & Ghinet S., Thermal-visco-acousticmetamaterials to damp acoustic modes in complex shape geometries at lowfrequencies, submission process in JASA (2020).
21. KoneT. C., Ghinet, S., Dupont, T., Panneton, R., Anant, G. & Wickramasinghe V. Characterizationof the acoustic properties of complex shape metamaterials. In Proceedings of 49thInternational Congress on Noise Control Engineering, INTER-NOISE 2020, 23-26August 2020, Seoul, South Korea.
22.Verdiere K., Panneton R., Elkoun S., Dupont T., and Leclaire P., Transfermatrix method applied to the parallel assembly of sound absorbing materials,JASA, 134, 4648-4658 (2013).
23.Champoux Y. & Allard J., Dynamic tortuosity and bulk modulus inair-saturated porous media,Journal of Applied Physics, 70(4), 1975-1979 (1991).