叠瓦量产工艺难在哪
叠片电池组件技术将电池片切割为4-5份小片,再将电池正反表面的边缘区域制备成主栅,然后使前一片电池的前表面边缘与下一片电池的背表面边缘互联。这样的设计使得电池片以更加紧密的方式互相连接,电池间缝隙降到最低,边缘甚至稍微重叠。叠片组件技术采用整体无主栅设计,通过一种类似导电胶的方式将电池以串并联结构紧密排布,省去了焊带焊接。
叠片技术采用无主栅设计,降内耗提功率的同时大幅度降低了反向电流对组件产生热斑效应的影响,提高了组件的机械性能。
解决热斑问题,抗裂能力增强。由于叠片组件独特的排列方式,降低了焊带电阻对组件功率的影响,保证了组件封装过程中的最小功率损失,降低了反向电流对于组件产生热斑效应的影响。叠瓦组件特有的柔性连接,可以最大程度地减少由于组件运输与现场安装可能带来的电池片隐裂,控制隐裂延展
性能及推广优化的其他措施:交联环节串焊机需针对电池的加温及冷却稍加优化;优化接线盒设计,移到边角位置以减少组件遮挡;双面发电组件优势难量化,需设置明确的功率检测及标称标准。目前,用于双面装置的IEC标准已进入审核阶段,预计2018年内即将发布,与目前组件售价与峰值功率挂钩的体系不同,双面组件售价或将与度电指标挂钩。
叠片技术通过交叠电池小片,实现无电池片间距,在同样面积下可以放置更多的电池片,从而有效扩大了电池片受光面积,发电增益可达18.5%,组件效率可提升到18.81%,远高于半片、多主栅等组件技术:
密度大,省空间,同版型组件可放置电池片数量增加13%。2017年主流的叠瓦版型是将1片常规尺寸的电池片(156mm边长)切成5小片,34小片串联成为一串,2串串联后再并联形成一个组件。组件中,电池片总面积相当于68片156mm×156mm电池,组件面积相当于60片156mm×156mm电池的版型,其尺寸为1623mm×1048mm×40mm,即同版型组件中电池片数量增加13.3%。
采用无主栅设计,减少金属栅线遮光面积。叠片电池的无主栅设计减少了金属栅线遮光面积,提高组件输出功率。
串并结构减少内阻,降低遮光影响。叠片组件特殊的串并结构降低了组件内阻与内部功耗。并联电路设计使叠瓦组件功率下降与阴影遮蔽面积呈线性关系,与其它常规组件相比在部分遮光的条件下表现更好。
叠瓦组件的导入大幅度地改变了传统的组件焊接技术,使得量产难度增大。主要包括四个方面的改进:电池片电极设计的改进;激光切片以及切片后的测试与分选;小片点胶焊接;导电胶代替金属焊带。
电极设计:无主栅设计使得小片的测试与分选较为困难。小片电池的边缘成为主栅位置,为该种小片的测试与分选带来了困难。目前国内绝大多数企业切片后不再进行分选。虽然整片进行了分选,但是整片内的效率不均匀性也会造成小片的功率差,为后续的组件封装带来功率下降的风险,这种情况对多晶硅电池片尤其明显。
激光切片:切片问题会影响组件的收益率。激光切片虽然已经是十分成熟的技术,但是激光切片所造成的边缘损伤、边缘短路、碎片等仍旧是十分重要的,影响着这种组件的收益率,对多晶组件尤为明显。
焊接技术:需加入特有的叠瓦流程。硅片叠焊的工艺包括:切片—涂胶—叠片—固化—汇流条焊接—排版—覆膜—层压,加入了特有的叠瓦流程,需采购专用的全自动叠瓦串焊机,使得单位面积下可以叠放更多的太阳能电池片。此外,电池片之间必须紧密连接,电池在生产过程中要非常平整,组件封装有一定的难度,需要采用新设备和材料。
导电胶:电池片生产的关键材料,完美替代品尚未出现。叠片技术采用无焊带设计,焊接材料包括导电胶、导电胶膜。导电胶膜具有更高的玻璃转化点(Tg),降低了因组件温度变化而带来的应力变化。导电胶的Tg低得多,长期使用后可靠性下降,但其金属含量比导电胶膜高很多。综合来看导电胶略胜一筹,但目前尚未找到完美的叠瓦焊接材料的解决方案。
导电胶固化温度不能过高,相当于层压温度(150℃以下),故只能使用低温导电银浆。其中,60~80%wt的导电粒子提供导电特性,20~40%wt的聚合物基体提供导电粒子的载体、固化方式、粘接强度、耐老化特性等。导电粒子一般为银离子,有机硅是比较全面的一种聚合物基体,其他聚合物基体还包括:丙烯酸脂体系;环氧体系;有机氟体系。此外,涂胶方式分为丝网印刷、螺杆点胶、喷射点胶。
成本方面,由于叠片组件改变了传统的焊接技术,在生产过程中需要采购额外的串焊设备,增加了生产成本。但是叠片组件在分选环节大大减少了生产时间和成本;叠片组件舍弃了传统的焊带技术,大幅节省了BOM成本。叠片技术适用于超薄电池片(100~120um),未来可有效节约硅成本。
来源:新兴产业观察者;姚遥/张斯琴
相关阅读
往期精彩内容推荐
回顾与展望:2019各领域十大新闻汇总
点“阅读原文”申报2019年度光伏细分行业领跑者