查看原文
其他

北海道大学龚剑萍教授团队Matter:成功制备小尺寸、高韧性的软复合材料

小柯 高分子科技 2022-09-02
点击上方“蓝字” 一键订阅

近日,日本北海道大学的龚剑萍教授团队Matter上发表题为“Tiny yet tough: Maximizing the toughness of fiber-reinforced soft composites in the absence of a fiber-fracture mechanism”的研究成果。该研究提出了一种简便通用的力学模型,能够精准预测并优化小尺寸下软复合材料的断裂韧性,成功在材料体系上实现了“小尺寸”和“高韧性”两种看似矛盾的性能结合。论文通讯作者是龚剑萍Daniel R. King; 第一作者是崔为


世界上的尖端应用(软体机器人,先进医疗器械等)往往需要整合一系列的优异性能,比如小尺寸、低弯曲刚度、高强度、高韧性。分子尺度的复合材料如双网络材料,纳米复合材料,能够实现上述部分性能的结合,但要将这些优异但相互矛盾的性能全部整合到一个材料体系仍然是一个巨大挑战。


北海道大学龚剑萍教授团队在2020年通过结合高强度高模量纤维及低模量高韧性高粘附性粘弹性体,开发出了一种超强韧的软复合材料(Adv. Mater., 2020, 32, 1907180),最高断裂韧性可达2500 kJ m-2,超越任何已知材料。作者通过系统研究该复合材料体系在不同尺寸的断裂行为,发现其主要呈现三种断裂方式:纤维抽出(小尺寸),纤维抽出/纤维破坏并存(中尺寸),以及纤维破坏(大尺寸)。


图1:(a)纤维增强粘弹性体软复合材料在不同尺寸下的断裂韧性。(b)该材料在不同尺寸下的断裂行为可以被细分为三个区域:纤维抽出(小尺寸,region I)、纤维抽出/纤维破坏并存(中尺寸,region II)、纤维破坏(大尺寸, region III)。(c)图a中region I的放大图。


在2020年的工作中,大尺寸下软复合材料断裂行为及增韧机理已经被阐明。如果能够阐明该材料小尺寸下的断裂机理并进行优化,将大大推动同时具备上述“矛盾性能”的材料开发。


图2:软复合材料的微结构。(a)材料截面的SEM图像。(b)对应图a的示意图。(c)纵向纤维束的SEM图像。可以看出单根纤维被基体充分浸润并环绕。(d)纵向/横向纤维束交界处的SEM图像。交界处的空隙被基体充分填满。


在今年的工作中,作者通过集中研究该软复合材料在小尺寸下的断裂行为,发现其独特的能量耗散机制:纤维抽出导致的纤维束周围基体破坏而非界面脱粘


图3:软复合材料的纤维抽出行为。(a)软复合材料在撕裂测试中的力-位移曲线,图中不同字母表示其在测试过程中不同时间点的状态。(b)横向/纵向纤维束的初始状态。(c)横向/纵向纤维束在撕裂测试刚刚开始时的状态。可以看出纤维的抽出导致连接处的基体开始发生形变。(d)横向/纵向纤维束在测试结束时的状态。基体被严重破坏,但仍然良好吸附在纤维束上。以上结果表明纤维抽出导致的是基体破坏而非界面脱粘。


根据此破坏行为,作者提出了一个力学模型,将软复合材料的断裂韧性与其本体尺寸、纤维几何结构、基体机械性能相关联。通过调控三种影响因素,作者成功实现了小尺寸下软复合材料断裂韧性的预测及优化,使其在不到1cm的宽度下也能达到500 kJ m-2以上的超高韧性。


图4:根据软复合材料的纤维抽出行为建立相应纤维抽出的力学模型。


图5:力学模型的实验结果验证。(a)固定尺寸下,材料断裂韧性受到基体韧性和纤维几何机构影响。(b)不同尺寸下,复合材料断裂韧性与本体尺寸成正比关系。复合材料断裂韧性有一个最小值,为基体本身的断裂韧性(c)图b中的斜率与基体断裂韧性和纤维几何结构因子乘积成正比。


图6:力学模型的通用性。由不同基体,不同纤维组成的复合材料在不同测试速度下的结果表明,该力学模型允许通过组分参数对复合材料的断裂韧性进行预测。


通过该工作,作者强调了三个新发现:


1)纤维增强粘弹性体复合材料即使在小尺寸下也可以达到超高韧性;

2)小尺寸复合材料中的纤维即使本身不通过破坏耗散能量,其几何结构也会显著影响复合材料的断裂韧性;

3)小尺寸复合材料的断裂韧性能够通过组分的相关参数进行预测和优化。


图7:韧性放大因子对复合材料宽度作图。结果表明,在小尺寸复合材料的断裂过程中,即使纤维本身不发生破坏,其几何结构也会显著影响复合材料的断裂韧性。


该工作为新型超韧迷你材料的开发提供了非常重要的实验参考及理论依据。


相关论文信息:

http://doi.org/10.1016/j.matt.2021.08.013


相关进展

北海道大学龚剑萍教授课题组《ACS Macro Letters》封面文章:巧妙控制剪切场,轻松构筑具有超结构的水凝胶!

北海道大学龚剑萍教授团队:利用微电极技术探究新型“杂化聚电解质”水凝胶中的阳离子-π作用

北海道大学龚剑萍教授团队《AFM》:超强水下黏附水凝胶

北海道大学龚剑萍教授团队:基于两性离子聚合物及强酸性电解质聚合物构建了一系列不同性质的水凝胶

北海道大学龚剑萍教授课题组在高强韧水凝胶应力松弛机理研究方面取得进展

北海道大学龚剑萍教授课题组PNAS:建构具有记忆和遗忘行为的水凝胶

北海道大学龚剑萍教授团队《Adv. Mater. 》:史上最韧材料!

北海道大学龚剑萍教授《Macromolecules》(封面)文章:仿生水凝胶的制备、挑战与机遇

北海道大学龚剑萍教授团队:自修复水凝胶中的多尺度结构延迟疲劳断裂

北海道大学龚剑萍教授课题组在物理水凝胶增韧机理方面取得进展

北海道大学龚剑萍课题组:利用微电极技术研究DN凝胶网络的破坏结构

日本北海道大学龚剑萍教授课题组在纤维增强水凝胶领域取得新进展

日本北海道大学龚剑萍教授团队开发出自我生长后可变更强的凝胶材料

日本北海道大学龚剑萍教授课题组:基于多重设计的在水下具有快速、可逆及强粘附的韧性水凝胶

日本北海道大学开发出新型水凝胶复合材料,强度为钢的5倍

日本科学家开发出超高强度水凝胶 

高分子科技原创文章。欢迎个人转发和分享,刊物或媒体如需转载,请联系邮箱:info@polymer.cn

诚邀投稿

欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。

欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。

申请入群,请先加审核微信号PolymerChina (或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。

这里“阅读原文”,查看更多


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存