郑大刘春太教授团队《ACS AMI》: 可拉伸多功能MXene褶皱涂层织物用于电磁干扰屏蔽和电/光热转换应用
如今,随着5G时代的到来和电子设备的快速发展,电磁干扰(EMI)和辐射污染严重影响着人类的健康。传统的电磁屏蔽材料在拉伸和弯曲变形下的机械稳定性较差,在大应变下电磁屏蔽性能急剧下降,因此有必要研制柔性可穿戴式电磁屏蔽材料。开发可拉伸电磁屏蔽的关键材料是具有应变不变性电导率的可拉伸导体。一种有效的方法是将导电填料与弹性基体结合,通过预拉伸、热收缩和溶剂诱导等方法,形成屈曲的褶皱结构。这种方法具有简便和高可控性。近年来,可拉伸导体的研究大多集中在应变传感器上,对可拉伸电磁屏蔽方面的研究并不多。此外,具有加热效应的可穿戴材料在电疗和人体节能加热方面引起了极大的研究兴趣。因此,有必要设计一种集电磁屏蔽和可调热管理性能于一体的可拉伸、可穿戴材料。
郑州大学橡塑模具国家工程研究中心刘春太教授团队在《ACS Applied Materials & Interfaces》期刊上发表了题为“MXene-coated Wrinkled Fabrics for Stretchable and Multifunctional Electromagnetic Interference Shielding and Electro/Photo-Thermal Conversion Applications”的文章(DOI:10.1021/acsami.1c19890)。通过简单的预拉伸和喷涂方法制备了具有褶皱结构的热塑性聚氨酯(TPU) /MXene复合织物(TMFs)。其褶皱结构存储了一定的可拉伸表面区域,保护MXene导电网络在拉伸过程中不受破坏。其中,极低的MXene负载量(0.5 mg cm-2)的TMF在50%的应变范围内,在动态拉伸过程中以及反复拉伸后均中表现出良好稳定的30 dB左右的电磁屏蔽性能。此外,由于其高导电性和局部表面等离子体共振(LSPR)效应,TMFs具有优异的焦耳加热(在5 V电压下可达104℃)和光热转换性能,并且在拉伸状态下仍具有良好的电/光热转换性能。因此,本工作在有效屏蔽电磁波的基础上集成了可调节热管理性能,为多功能可穿戴材料提供了新的策略。
图1(a)Ti3C2Tx MXene纳米片和(b)具有精细微褶皱结构的TPU/MXene织物的制造过程示意图。
图2(a)Ti3AlC2、(b)多层Ti3C2Tx 和(c)Ti3C2Tx MXene纳米片的SEM图,(d)分层Ti3C2Tx MXene纳米片的TEM和(e)AFM图像((e)中插图是对应的SAED图案)。(f)通过AFM图像统计分层Ti3C2Tx MXene的横向尺寸。(g)Ti3AlC2和分层Ti3C2Tx MXene的XRD图谱。(g)Ti3AlC2和Ti3C2Tx MXene的XPS图谱。(i)Ti3C2Tx MXene的XPS Ti 2p图谱。
图3(a-c)不同放大倍数下TPU纳米纤维膜表面形态的SEM图像,(d-f)具有褶皱结构的TPU/MXene织物在动态拉伸过程中的表面形态变化,(g-i)动态拉伸过程中平面TPU/MXene织物表面形态的变化。
图4(a)不同MXene含量TMF的EMI屏蔽性能。TMF-12(b)在不同施加应变下,以及(c)在50个应变周期后的电磁干扰屏蔽性能。(d)不同MXene含量的TMF和平面TMF的R-A系数。(e)TMF-12在不同施加应变下的R-A系数。(f)褶皱TMF的EMI屏蔽机理图。
图5(a)在4 V电压下TMF的温度曲线。(b)在1至5 V下TMF-9的温度曲线和对应的(c)红外相机图像。(d)在不同电压下的饱和温度与U2的关系。(e)在4 V电压下,TMF-9在各种施加应变下的温度曲线。(f)TMF-9加热器的温度可调性。(g,h)戴在手套上的可穿戴TMF-9加热器的数字和红外相机图像。
图6(a)100 mW/cm2光照射下TMFs的温度-时间曲线。右边的插图是对应的红外图像。(b)不同辐照功率密度下TMF-9的温度曲线。(c)实验数据和饱和温度与辐照功率密度的线性拟合。(d)TMF-3在开-关光照循环下的温度-时间曲线。100mW/cm2辐照功率密度下TMF-9在不同应变下的(e)温度曲线和(f)红外相机图像。
郑州大学橡塑模具国家工程研究中心的硕士研究生董婧雯是该论文的第一作者,通讯作者为苏凤梅副教授、冯跃战副教授和刘春太教授。该研究得到了国家自然科学基金(21704096,51703217,12072325)和河南省自然科学项目(20A430028)的资金支持。
原文链接:
https://doi.org/10.1021/acsami.1c19890
相关进展
郑大申长雨院士、刘春太教授团队米皓阳教授课题组《Nano Energy》:超临界CO2发泡助力摩擦纳米发电机的绿色制造
郑州大学橡塑模具团队《Nano Energy》:在超临界二氧化碳发泡(scCO2)技术制备高性能摩擦纳米发电机方面取得进展
郑州大学申长雨院士和刘春太教授团队ACS Nano:多功能磁性MXene/石墨烯气凝胶用于高性能电磁波吸收
河科大赫玉欣副教授与郑大刘春太教授团队《ACS AMI》:具有高灵敏度、宽检测范围的柔性多孔可穿戴应变传感器
郑州大学申长雨院士和刘春太教授团队:用于高效电磁屏蔽、电热性能和应变传感器的多功能水性聚氨酯/Ag复合薄膜
郑州大学申长雨院士和刘春太教授团队CSTE: 通过构建三维混合填料网络提升复合材料的热导率
郑州大学刘宪虎等《Nano-Micro Letters》:静电纺丝制备高灵敏度TPU/CB应变传感器及其建模分析
郑州大学申长雨院士和刘春太教授团队AFM:用于压力传感和油水分离的多功能聚酰亚胺纳米纤维/MXene导电复合气凝胶
郑州大学申长雨院士和刘春太教授团队在柔性多功能透明电磁屏蔽材料方面取得进展
郑州大学申长雨院士和刘春太教授团队:水辅助热致相分离法制备聚合物疏水微球
郑州大学刘宪虎副教授和中原工学院米立伟教授Compos. Commun.:少量碳纳米管对微注射聚丙烯制备结晶和热-机械性能的影响
郑州大学申长雨院士和刘春太教授团队MME: 熔融共混MXene/TPU复合材料力学和流变性能研究
郑州大学申长雨院士、刘春太教授团队:聚合物油水分离材料制备研究进展
郑州大学申长雨院士和刘春太教授团队:高性能聚酰亚胺基可穿戴压力传感器
郑州大学申长雨院士和刘春太教授团队:具有防腐/自清洁的超疏水纸基应变传感器
郑州大学申长雨院士和刘春太教授团队:皮层剥离方法制备纤维束用于油水分离
高分子科技原创文章。欢迎个人转发和分享,刊物或媒体如需转载,请联系邮箱:info@polymer.cn
诚邀投稿
欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。
欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。
申请入群,请先加审核微信号PolymerChina (或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。
点
这里“阅读原文”,查看更多