黑产揭秘 之 攻与防
点击上方蓝字关注带来好运哦!!
黑产常见玩儿法
1. 刷券
互联网公司通常会划拨一笔可观的费用补贴给用户,用于拉新、提升活跃度、打造忠诚度、改善体验、引导消费方向、促进转化,或在大促阶段聚集流量。这些补贴常见的发放形式为,
抵用券 新人红包(大多也是抵用券,往往实际权益较高,但只有新人可以使用) 小额购物津贴(常通过签到、红包雨、小游戏等形式发放) 平台权益单位(如京豆、淘金币等) 积分 有条件的返现
黑产常会利用技术手段,扫描系统相关接口,当发现目标券出现时(如京东上午10点放出来一批plus会员券),就通过电脑脚本操作手机群控系统的客户端账号,来批量领券。
第二步:券变现
2. 刷红包、刷游戏、刷补贴、刷积分
3. 刷单量/成交金额
5. 刷流量
供应商联合黑产,控制大批量账户下单购买该商品。订单产生后并不实际发货,伪造虚假发货信息(物流信息伪造很容易),显示订单完成。在厂商直送的情况下,这种方式可以很容易地套取平台补贴,然后黑产和供应商分成。
黑产通过控制的大批账户直接生成大批订单,从电商平台低价进货,再进行转售。此类补贴商品平台常常会限制单个用户的购买数量,平台风控系统也可能会识别和拦截大量配送到同一地址的不同用户订单,在此情况下,黑产甚至会和快递员联合,在同伙快递员的负责的片区内生成一系列的虚假地址(例如,和平里西街18号1层,2层,3层...99层)的订单。快递员识别该订单后,直接配送到黑产指定的真实地址。
7. 联合物流公司骗取正逆向物流费用
针对平台包邮的可无理由退换的商品,黑产与物流公司或快递员联合,通过控制的大批账户直接生成多个订单,指定系列虚假地址。电商公司向物流公司申请发货后,物流公司或其快递员暂存这批货物,随后,黑产通过控制的账号再操作批量退货,于是在交易并未成功的情况下凭空产生了由电商公司支付的正向和逆向的物流费用,由黑产和物流公司瓜分。
曾经发生过这么一件事,一个著名的互联网服装品牌,忽然报告服装大量被0元购买,损失惨重。技术团队立刻调查问题原因,发现是因为运营在发该品牌店铺满减券的时候,没有勾选“不可叠加”选项,导致用户可以批量领券,叠加用券,最后把订单价格打到0元。更有甚者,有人把该漏洞发布到专门报告互联网安全问题的“乌云平台”,导致批量黑产涌入,瞬间产生巨大销量。
普通用户可能也会发现价格或促销错误,从而得到非常划算的订单,但该事件的特点尤其是发布到乌云平台的动作,具备比较明显的技术操作特征,很可能是黑产的系统扫描发现了该漏洞而产生的后续操作。
这样的情况也时常发生在价格设置错误的时候。例如,技术上可以预先定义好一批热销商品的价格基准,并通过技术手段扫描各电商网站的商详页或价格接口,当发现售价低于某个幅度的时候,即进行提醒,确认后可以批量下单套取。
人为设置的价格,出现设置错误在概率上是个不可避免的情况。而按相关法规,如果挂出来某个价格,成交后必须履约。电商的实操中,有的比较老实规范,在损失可控的情况下只好履约;有的比较粗暴,直接取消订单不发货,但如果消费者进行投诉,一投诉一个准,电商必然败诉,当然坚持投诉的消费者实际上看也就是一小部分。最好的做法是与消费者友好协商,谋求谅解,作出一些合理补偿,随后取消订单。
11. 流量劫持与钓鱼网站
大家有没有过这样的经验,就是打开某个app,在app的某个页面,如首页或个人中心上,看见悬浮了一个小窗口,比如“抽奖”,点击后,进入一个抽奖页面,用户可能会在该页面上获得一个券,需要去和该app毫无关系的网站使用,或者获得一个奖品,需要出邮费领取,或者进入一个钓鱼网站,输入用户名密码登录?
流量劫持
我们以前有时会接到这样的投诉,网站页面被注入其它网站广告,或用户被引流去了其它网站,或者受骗上当蒙受损失。跟进后会发现,这种情况往往集中发生在某个特定地区的特定ISP的用户。技术团队与该ISP联系,对方通常会说“哦,我们看一下”,随后该现象消失。
非常明显,这通常是互联网服务提供商内部人员与黑产的联合作案。在ISP的DNS端,对于特定网站的访问请求,在特定页面上配置叠加该悬浮窗,以达到截取流量,诈骗等特定目的。这种行为我们称之为流量劫持。
流量劫持
在把传输协议改为加密的https后,该现象消失。
前文提到黑产中有一伙“职业打假人”,根据广告法等法规对系统疏漏进行监测,发现疏漏后下单索赔讹诈。这个操作可以人肉来做,也可以通过技术手段,对常见问题进行扫描,例如扫描电商平台上出现的“最”之类的字样,找到后经人工确认,随后进行讹诈。
有攻就有防,下面简单聊一下风险控制,简称风控。由于中国的黑产较为猖獗,一般大型互联网公司都设有风控团队,对黑产的常见操作进行防范与控制。
很多年前我有个朋友,专门开发一个淘宝小控件,商家使用该控件后,可以让符合特定条件的用户,比如差评率或退货率高于某个比例的买家,看到商品的价格自动变为“999999”。可以认为这就是早期的风控。这个朋友的业务十分火爆,很多卖家向他购买该控件。
上面的刷券、刷红包、流量劫持这些操作,往往出在数据格式被破解,权益领取或网络访问请求被模拟的情况下。此时通过改为https协议,或者数字签名的方式对数据传输进行加密,即可大幅减轻该问题。当然家贼难防,如果是内部程序员联合作案,编译出“特制”的虚假客户端或在服务器端留下后门,是无法完全避免这种情况的。
2. 登录验证码
3. 风控体系
很多时候黑产或者专业占便宜的用户的行为模式是有迹可循的。比如,高频访问领券抽奖页面,订单高比例出现退货,账户存在大量异常订单(金额、收货地址等),频繁不支付,大量账户的IP地址相同或来源于同一个内网,等等。
于是,不难想到,针对每一种黑产的行为,总结其行为特征,并建立对应的欺诈行为模板,或称之为欺诈特征体系。并通过实际的模式训练过程,不断优化该模板,使其准确度不断提升。在准确度相对可靠的情况下,通过对行为模板的行为匹配,可以高概率识别出异常账号。
一旦识别了某账号很可能是黑产,于是根据系统中定义的处置策略进行应对。典型的常见操作是,一是把该账号立刻加入黑名单库,二是把系统页面做某种处理,比如前面提到到价格变为“999999”,或者把加车、结算等按钮变为灰色不可点,三是进行订单拦截,下单失败,处理为无效订单。
对于黑名单库中的账号,下次再登录时,根据处置策略进行应对,或禁止其登录,或在登录后对某些行为进行屏蔽,如领券、下单等。
黑名单库也可以进行人为维护,释放误伤的用户(电商公司的产研团队因为频繁进行测试操作,常被误锁定
此外,对访问设备的识别也是一个重要手段。模拟器往往与真实手机在系统版本、内存使用率、可用存储空间、电池电量、进程数量、移动网络码等方面具有明显的差异,可以通过此类参数进行设备判别,并屏蔽高风险的客户端。
这整套体系,就是风控体系,其中的核心是规则引擎、欺诈特征模板、黑名单、处置策略,以及大数据训练模型。本文不进行深入展开,有兴趣的读者可以找有关资料进一步补充阅读。
基本的风控体系模型
上述就是对黑产的常见手段和风控方式简述,希望对大家理解黑产并且在产品设计中降低风险有所帮助。