其他
北师大版六年级数学上册1.5《圆的面积(一)》微课视频 | 导学案 | 课件 | 练习(可下载)
电子课本
知识点
圆的面积:圆所占面积的大小叫圆的面积。1.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。圆的面积公式:S=πr²。2.圆的面积公式:S=πr² 或者S=π(d/2)² 或者S=π(C÷(2π))²
图文讲解
同步练习
一、填空
1.C =( ) = ( ) S= ( )
2.已知圆的周长,求d= ( ),求r=( ) 。
3.圆的半径扩大2倍,直径就扩大( )倍,周长就扩大( )倍,面积就扩大( )倍。
二、求圆的面积。
(1)r=3分米 (2)d=8厘米
三、用一根12.56分米的铁丝弯成一个圆形铁环(接口处不计),铁环的直径是多少分米?面积是多少平方分米?
参考答案
参考答案
一、1. 2πr πd πr²
2. C/π,C/2π
3. 2 2 4
二、(1)3.14×3²=28.26(平方分米)
(2)3.14×(8÷2)²=50.24(平方厘米)
三、 12.56÷3.14=4(分米)
3.14×4²=50.24(平方分米)
答:直径是4分米,面积是50.24平方分米
导学案
教学设计
圆的面积(一)。(教材第14~15页)1.了解圆的面积的含义,经历估算和小组操作、讨论等探索圆的面积公式的过程。2.理解并掌握圆的面积公式,能正确运用公式进行计算,解决一些简单的实际问题。3.体验推导圆面积公式时的探索性和结论的确定性,感受“化曲为直”的转化的数学思想和方法。重点:经历圆的面积公式的推导过程,理解并掌握圆的面积公式,能运用公式解决简单的实际问题。难点:推导圆的面积计算公式。课件,大小相等的圆形纸片(8等分的圆形纸片、16等分的圆形纸片)。师:同学们,上节课我们学习了“圆的周长”,谁能告诉大家圆的周长公式是什么?(C=πd或C=2πr)师:这节课我们主要研究“圆的面积”。谁能说说什么是图形的面积?圆的面积指什么?(明确:圆所占平面的大小就是圆的面积)师:你还记得当初我们用什么方法推导出平行四边形、三角形、梯形的面积公式吗?学生可能会说:• 我们用割补的方法推导出了平行四边形的面积公式,就是沿着平行四边形的一条高剪下一个三角形,平移后补在另一边就可以转化成长方形,长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底×高。• 推导三角形的面积公式,我们也用到了转化的方法,用两个完全相同的三角形就可以拼成一个平行四边形,平行四边形的底就是三角形的底,平行四边形的高就是三角形的高,而一个三角形的面积是平行四边形面积的一半,所以三角形的面积=底×高÷2。• 梯形面积公式的推导,我们同样用到了转化的方法,用两个完全相同的梯形可以拼成一个平行四边形,平行四边形的底是梯形上底与下底的和,平行四边形的高是梯形的高,而一个梯形的面积是平行四边形面积的一半,所以梯形的面积=(上底+下底)×高÷2。师:这三种图形面积公式的推导方法有什么共同之处?生:都是借助转化的方法,把不能解决的问题转变成我们会解决的问题,也就是把我们不会计算面积的图形,转化成我们会计算面积的图形。师:你能比较出这两个图形面积的大小吗?遇到了什么问题?(课件出示:圆形与正方形)生1:不能直观地看出这两个图形的大小。能不能把“圆”转化成我们学过的图形,进而推算圆的面积呢?生2:圆的面积是否也有计算公式呢?【设计意图:“温故而知新”,引导学生回忆之前接触过的图形面积公式的推导过程,唤起学生已有的图形转化法推导面积公式的经验,渗透着要求圆的面积也需从转化的思想入手,既为新课教学做好充分的准备,又在潜移默化中培养学生的迁移类推能力。】1.估算圆的面积。师:是啊,怎样知道一个圆的面积呢?(课件出示:教材第14页最上面图)生1:根据第一幅图只能求出圆内最大正方形的面积,剩下的面积只能估算出来。生2:根据第二幅图可以数整方格,但不是整格的就只能估算,这样圆的面积也只能估算出来。师:是啊,用这样的方法我们只能估算出圆的面积,根本不能知道圆的实际面积。所以要想知道圆的面积,我们应该探究圆的面积计算公式,这样才比较准确。2.推导圆的面积公式。师:请大家先猜一猜圆的面积与什么有关,并说说这样猜想的根据。学生可能会说:• 圆的面积与半径有关,因为半径决定圆的大小。• 圆的面积可能与直径有关,因为圆的大小与直径有关。师:同学们说得似乎很有道理,那么圆的面积可以怎么计算呢?和它的半径或直径究竟有什么关系呢?【设计意图:因为学生已经知道圆的大小由圆的半径决定,所以让学生展开有根有据的猜想,既为下面的教学做铺垫,又培养他们合理的猜想意识。】师:我们之前研究平行四边形、三角形、梯形面积公式时,都是把未知的问题转化成已知的问题,那么能否将圆转化成以前学过的图形呢?试一试。跟小组同学合作并交流。学生进行小组合作。师:谁愿意把你们小组的研究发现告诉大家呢?生1:我们把8等分的圆形纸片经过剪拼,可以得到近似的平行四边形。生2:我们把16等分的圆形纸片经过剪拼,也可以得到近似的平行四边形。生3:我们把拼成的这两组图形经过对比发现,圆形纸片分的份数越多,拼出的图形越接近平行四边形。师:圆等分的份数越多,拼出的图形真的是越接近平行四边形吗?看一看,想一想。(课件出示:32等分的圆剪拼成平行四边形的过程)学生认真观察课件演示过程。师:仔细观察、认真思考,拼成的平行四边形与原来的圆之间有什么联系?可以跟小组同学商量讨论。学生在小组内讨论。师:谁愿意把你们讨论的结果告诉大家?生1:平行四边形的面积相当于圆的面积。生2:平行四边形的底相当于圆周长的一半。生3:平行四边形的高相当于圆的半径。师:根据平行四边形的面积计算公式,你能得出圆的面积计算公式吗?试试看。生:如果用S表示圆的面积,r表示圆的半径,那么平行四边形的面积=底×高 圆的面积S=πr2 S=πr×r【设计意图:通过学生剪拼,借助课件直观演示,采用转化、想象等方法,利用等积变形把圆的面积转化成学过的平面图形,逐步归纳概括出圆面积的计算方法,这样多层次的操作,多角度的思考,既沟通了新旧知识的联系,又培养了学生的推理能力。多媒体课件展示拼成图形的变化过程,更有利于学生理解圆面积公式的合理性。】师:看看今天我们都学会了什么,说一说。学生自由叙述自己学会了什么。师:今天我们又一次运用转化的方法解决了未知的问题,在这个过程中动手操作、亲自试验也是很重要的。相信大家在今后,能更主动地运用这些思想方法去解决一些问题。【设计意图:数学的教学,不仅是教会知识,而且要始终关注学生的数学思考,关注探索过程的有序、有效,重视渗透一定的数学思想方法。在此过程中,培养学生的数学素养和学习数学的能力。】怎么获取配套导学案、练习等资料?
按下面方法扫码回复
▼
免费领取方式
点击左下方【阅读原文】
关注后发送消息“北师111”
即可领取全套资料
点击左下方【阅读原文】
关注后发送消息“北师111”
即可领取全套资料