其他
Science:走向量子互联网
The following article is from 墨子沙龙 Author Gabriel Popkin
“首个能够传输单个纠缠光子的网络已经开始成形。中国2017年报道的一项成果是最引人瞩目的:一颗名为“墨子”的量子卫星将纠缠粒子对发送到相距1200公里的两个地面站(Science, p1110, 2017-6-16)。这一成就给美国政府敲响了警钟,最终导致2018年美国《国家量子倡议法案》的通过,该法案经时任总统唐纳德·特朗普签署而成为法律文件,其旨在刺激美国的量子技术。美国能源部一直致力于构想美国的量子互联网,在今年4月,它进一步加大力度,宣布投入2500万美元用于量子互联网的研发,以连接国家实验室和大学。”
“由中国科学技术大学物理学家潘建伟领导的这个中国团队一直在继续发展他们的网络。根据Nature杂志1月份的一篇论文,使用光纤和可信中继,这一网络已经跨越4600多公里。在其他国家,一些更短距离的量子连接的可行性也得到了证实。”
“潘建伟团队也演示了用原子云作为量子存储的中继器。但在2019年发表于Nature Photonics的一项研究中,他的团队演示了一个完全不同方案的早期原型:通过并行光纤发送如此大量的纠缠光子,使得其中至少有一个可能在旅程中存活下来。潘建伟说,这一方案尽管有望避免使用中继器,但那样该网络将需要至少纠缠数百个光子;他们目前的记录是12个。利用卫星产生纠缠是潘建伟团队正在开发的另一项技术,这也可以减少对中继器的需求,因为光子在自由空间中可以存活的距离要比在光纤中长得多。”
“波士顿、洛杉矶和华盛顿特区正在建立雏形的量子网络,还有两个网络将把伊利诺斯州的阿贡国家实验室和费米国家加速器实验室与芝加哥地区的几所大学连接起来。”
“研究人员已经朝着全纠缠网络迈出了最初的步伐。2015年,荷兰代尔夫特理工大学的科学家把两颗小钻石(金刚石NV色心体系)分别放置在校园内相距1.3公里的两处,将光子与包裹在小钻石中心的氮原子中的电子自旋纠缠在一起。然后,这些光子被发送到一个中间站,在那里它们相互作用,使得两个钻石节点纠缠起来。这项实验创造了‘可预报’量子纠缠(意味着研究人员可以确认并使用它)的距离纪录,而且这种连接持续了数微秒。”
“美国石溪大学的Figueroa利用铷蒸气来当作中继器的一个组成部分,即量子存储器。铷原子之所以引人瞩目是因为其量子内态可以通过光来设定和控制。在Figueroa的实验室里,来自晶体(能使光子频率劈裂)的纠缠光子进入各自含有1万亿量级铷原子的元件中。在那里,每个光子的信息被编码为原子的叠加,并持续了几分之一毫秒——这对量子实验来说相当不错了。”
“哈佛大学的Mikhail Lukin则用另一种不同的介质来建造量子中继器:包裹在钻石中的硅原子。入射光子可以轻微调整硅电子的自旋,从而产生潜在的稳定存储;在2020年发表于Nature杂志的一篇论文中,他的团队称,他们捕获和存储量子态的时间超过了五分之一秒,远远超过铷存储的时间。尽管钻石必须被冷却到绝对零度以上几分之一的温度,Lukin认为所需的冷冻机正在迅速变得小型化和高效。”
“在荷兰代尔夫特理工大学,Wehner和她的同事们也在推动研究钻石的方法,但他们使用的是氮原子而不是硅。上个月在Science杂志上,该团队报道了一项进展:在实验室中纠缠了三颗钻石,创造了一个微型量子网络。……与现实世界量子网络的要求相比,这种距离还短得多,效率也低得多。”