Linux TCP GSO 和 TSO 实现
(点击上方公众号,可快速关注)
来源:lvyilong316
blog.chinaunix.net/uid-28541347-id-5763844.html
(注:kernel版本:linux 2.6.32)
概念
TSO(TCP Segmentation Offload): 是一种利用网卡来对大数据包进行自动分段,降低CPU负载的技术。 其主要是延迟分段。
GSO(Generic Segmentation Offload): GSO是协议栈是否推迟分段,在发送到网卡之前判断网卡是否支持TSO,如果网卡支持TSO则让网卡分段,否则协议栈分完段再交给驱动。 如果TSO开启,GSO会自动开启。
以下是TSO和GSO的组合关系:
GSO开启, TSO开启: 协议栈推迟分段,并直接传递大数据包到网卡,让网卡自动分段
GSO开启, TSO关闭: 协议栈推迟分段,在最后发送到网卡前才执行分段
GSO关闭, TSO开启: 同GSO开启, TSO开启
GSO关闭, TSO关闭: 不推迟分段,在tcp_sendmsg中直接发送MSS大小的数据包
开启GSO/TSO
驱动程序在注册网卡设备的时候默认开启GSO: NETIF_F_GSO
驱动程序会根据网卡硬件是否支持来设置TSO: NETIF_F_TSO
可以通过ethtool -K来开关GSO/TSO
是否推迟分段
从上面我们知道GSO/TSO是否开启是保存在dev->features中,而设备和路由关联,当我们查询到路由后就可以把配置保存在sock中。
比如在tcp_v4_connect和tcp_v4_syn_recv_sock都会调用sk_setup_caps来设置GSO/TSO配置。
需要注意的是,只要开启了GSO,即使硬件不支持TSO,也会设置NETIF_F_TSO,使得sk_can_gso(sk)在GSO开启或者TSO开启的时候都返回true
l sk_setup_caps
从上面可以看出,如果设备开启了GSO,sock都会将TSO标志打开,但是注意这和硬件是否开启TSO无关,硬件的TSO取决于硬件自身特性的支持。下面看下sk_can_gso的逻辑。
l sk_can_gso
static inline int sk_can_gso(const struct sock *sk)
{
/*对于tcp,在tcp_v4_connect中被设置:sk->sk_gso_type = SKB_GSO_TCPV4*/
return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
}
l net_gso_ok
static inline int net_gso_ok(int features, int gso_type)
{
int feature = gso_type << NETIF_F_GSO_SHIFT;
return (features & feature) == feature;
}
由于对于tcp 在sk_setup_caps中sk->sk_route_caps也被设置有SKB_GSO_TCPV4,所以整个sk_can_gso成立。
GSO的数据包长度
对紧急数据包或GSO/TSO都不开启的情况,才不会推迟发送, 默认使用当前MSS。开启GSO后,tcp_send_mss返回mss和单个skb的GSO大小,为mss的整数倍。
l tcp_send_mss
static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
{
int mss_now;
mss_now = tcp_current_mss(sk);/*通过ip option,SACKs及pmtu确定当前的mss*/
*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
return mss_now;
}
l tcp_xmit_size_goal
l tcp_sendmsg
应用程序send()数据后,会在tcp_sendmsg中尝试在同一个skb,保存size_goal大小的数据,然后再通过tcp_push把这些包通过tcp_write_xmit发出去
int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
size_t size)
{
struct sock *sk = sock->sk;
struct iovec *iov;
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb;
int iovlen, flags;
int mss_now, size_goal;
int err, copied;
long timeo;
lock_sock(sk);
TCP_CHECK_TIMER(sk);
flags = msg->msg_flags;
timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
/* Wait for a connection to finish. */
if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
goto out_err;
/* This should be in poll */
clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
/* size_goal表示GSO支持的大小,为mss的整数倍,不支持GSO时则和mss相等 */
mss_now = tcp_send_mss(sk, &size_goal, flags);/*返回值mss_now为真实mss*/
/* Ok commence sending. */
iovlen = msg->msg_iovlen;
iov = msg->msg_iov;
copied = 0;
err = -EPIPE;
if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
goto out_err;
while (--iovlen >= 0) {
size_t seglen = iov->iov_len;
unsigned char __user *from = iov->iov_base;
iov++;
while (seglen > 0) {
int copy = 0;
int max = size_goal; /*每个skb中填充的数据长度初始化为size_goal*/
/* 从sk->sk_write_queue中取出队尾的skb,因为这个skb可能还没有被填满 */
skb = tcp_write_queue_tail(sk);
if (tcp_send_head(sk)) { /*如果之前还有未发送的数据*/
if (skb->ip_summed == CHECKSUM_NONE) /*比如路由变更,之前的不支持TSO,现在的支持了*/
max = mss_now; /*上一个不支持GSO的skb,继续不支持*/
copy = max - skb->len; /*copy为每次想skb中拷贝的数据长度*/
}
/*copy<=0表示不能合并到之前skb做GSO*/
if (copy <= 0) {
new_segment:
/* Allocate new segment. If the interface is SG,
* allocate skb fitting to single page.
*/
/* 内存不足,需要等待 */
if (!sk_stream_memory_free(sk))
goto wait_for_sndbuf;
/* 分配新的skb */
skb = sk_stream_alloc_skb(sk, select_size(sk), sk->sk_allocation);
if (!skb)
goto wait_for_memory;
/*
* Check whether we can use HW checksum.
*/
/*如果硬件支持checksum,则将skb->ip_summed设置为CHECKSUM_PARTIAL,表示由硬件计算校验和*/
if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
skb->ip_summed = CHECKSUM_PARTIAL;
/*将skb加入sk->sk_write_queue队尾, 同时去掉skb的TCP_NAGLE_PUSH标记*/
skb_entail(sk, skb);
copy = size_goal; /*这里将每次copy的大小设置为size_goal,即GSO支持的大小*/
max = size_goal;
}
/* Try to append data to the end of skb. */
if (copy > seglen)
copy = seglen;
/* Where to copy to? */
if (skb_tailroom(skb) > 0) { /*如果skb的线性区还有空间,则先填充skb的线性区*/
/* We have some space in skb head. */
if (copy > skb_tailroom(skb))
copy = skb_tailroom(skb);
if ((err = skb_add_data(skb, from, copy)) != 0) /*copy用户态数据到skb线性区*/
goto do_fault;
} else { /*否则尝试向SG的frags中拷贝*/
int merge = 0;
int i = skb_shinfo(skb)->nr_frags;
struct page *page = TCP_PAGE(sk);
int off = TCP_OFF(sk);
if (skb_can_coalesce(skb, i, page, off) && off != PAGE_SIZE) {/*pfrag->page和frags[i-1]是否使用相同页,并且page_offset相同*/
/* We can extend the last page
* fragment. */
merge = 1; /*说明和之前frags中是同一个page,需要merge*/
} else if (i == MAX_SKB_FRAGS || (!i && !(sk->sk_route_caps & NETIF_F_SG))) {
/* Need to add new fragment and cannot
* do this because interface is non-SG,
* or because all the page slots are
* busy. */
/*如果设备不支持SG,或者非线性区frags已经达到最大,则创建新的skb分段*/
tcp_mark_push(tp, skb); /*标记push flag*/
goto new_segment;
} else if (page) {
if (off == PAGE_SIZE) {
put_page(page); /*增加page引用计数*/
TCP_PAGE(sk) = page = NULL;
off = 0;
}
} else
off = 0;
if (copy > PAGE_SIZE - off)
copy = PAGE_SIZE - off;
if (!sk_wmem_schedule(sk, copy))
goto wait_for_memory;
if (!page) {
/* Allocate new cache page. */
if (!(page = sk_stream_alloc_page(sk)))
goto wait_for_memory;
}
err = skb_copy_to_page(sk, from, skb, page, off, copy); /*拷贝数据到page中*/
if (err) {
/* If this page was new, give it to the
* socket so it does not get leaked.
*/
if (!TCP_PAGE(sk)) {
TCP_PAGE(sk) = page;
TCP_OFF(sk) = 0;
}
goto do_error;
}
/* Update the skb. */
if (merge) { /*pfrag和frags[i - 1]是相同的*/
skb_shinfo(skb)->frags[i - 1].size += copy;
} else {
skb_fill_page_desc(skb, i, page, off, copy);
if (TCP_PAGE(sk)) {
get_page(page);
} else if (off + copy < PAGE_SIZE) {
get_page(page);
TCP_PAGE(sk) = page;
}
}
TCP_OFF(sk) = off + copy;
}
if (!copied)
TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
tp->write_seq += copy;
TCP_SKB_CB(skb)->end_seq += copy;
skb_shinfo(skb)->gso_segs = 0; /*清零tso分段数,让tcp_write_xmit去计算*/
from += copy;
copied += copy;
if ((seglen -= copy) == 0 && iovlen == 0)
goto out;
/* 还有数据没copy,并且没有达到最大可拷贝的大小(注意这里max之前被赋值为size_goal,即GSO支持的大小), 尝试往该skb继续添加数据*/
if (skb->len < max || (flags & MSG_OOB))
continue;
/*下面的逻辑就是:还有数据没copy,但是当前skb已经满了,所以可以发送了(但不是一定要发送)*/
if (forced_push(tp)) { /*超过最大窗口的一半没有设置push了*/
tcp_mark_push(tp, skb); /*设置push标记,更新pushed_seq*/
__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); /*调用tcp_write_xmit马上发送*/
} else if (skb == tcp_send_head(sk)) /*第一个包,直接发送*/
tcp_push_one(sk, mss_now);
continue; /*说明发送队列前面还有skb等待发送,且距离之前push的包还不是非常久*/
wait_for_sndbuf:
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
wait_for_memory:
if (copied)/*先把copied的发出去再等内存*/
tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
/*阻塞等待内存*/
if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
goto do_error;
mss_now = tcp_send_mss(sk, &size_goal, flags);
}
}
out:
if (copied) /*所有数据都放到发送队列中了,调用tcp_push发送*/
tcp_push(sk, flags, mss_now, tp->nonagle);
TCP_CHECK_TIMER(sk);
release_sock(sk);
return copied;
do_fault:
if (!skb->len) {
tcp_unlink_write_queue(skb, sk);
/* It is the one place in all of TCP, except connection
* reset, where we can be unlinking the send_head.
*/
tcp_check_send_head(sk, skb);
sk_wmem_free_skb(sk, skb);
}
do_error:
if (copied)
goto out;
out_err:
err = sk_stream_error(sk, flags, err);
TCP_CHECK_TIMER(sk);
release_sock(sk);
return err;
}
最终会调用tcp_push发送skb,而tcp_push又会调用tcp_write_xmit。tcp_sendmsg已经把数据按照GSO最大的size,放到一个个的skb中, 最终调用tcp_write_xmit发送这些GSO包。tcp_write_xmit会检查当前的拥塞窗口,还有nagle测试,tsq检查来决定是否能发送整个或者部分的skb, 如果只能发送一部分,则需要调用tso_fragment做切分。最后通过tcp_transmit_skb发送, 如果发送窗口没有达到限制,skb中存放的数据将达到GSO最大值。
l tcp_write_xmit
static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
int push_one, gfp_t gfp)
{
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb;
unsigned int tso_segs, sent_pkts;
int cwnd_quota;
int result;
sent_pkts = 0;
if (!push_one) {
/* Do MTU probing. */
result = tcp_mtu_probe(sk);
if (!result) {
return 0;
} else if (result > 0) {
sent_pkts = 1;
}
}
/*遍历发送队列*/
while ((skb = tcp_send_head(sk))) {
unsigned int limit;
tso_segs = tcp_init_tso_segs(sk, skb, mss_now); /*skb->len/mss,重新设置tcp_gso_segs,因为在tcp_sendmsg中被清零了*/
BUG_ON(!tso_segs);
cwnd_quota = tcp_cwnd_test(tp, skb);
if (!cwnd_quota)
break;
if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
break;
if (tso_segs == 1) { /*tso_segs=1表示无需tso分段*/
/* 根据nagle算法,计算是否需要推迟发送数据 */
if (unlikely(!tcp_nagle_test(tp, skb, mss_now, (tcp_skb_is_last(sk, skb) ? /*last skb就直接发送*/
nonagle : TCP_NAGLE_PUSH))))
break;
} else {/*有多个tso分段*/
if (!push_one /*push所有skb*/
&& tcp_tso_should_defer(sk, skb))/*/如果发送窗口剩余不多,并且预计下一个ack将很快到来(意味着可用窗口会增加),则推迟发送*/
break;
}
/*下面的逻辑是:不用推迟发送,马上发送的情况*/
limit = mss_now;
/*由于tso_segs被设置为skb->len/mss_now,所以开启gso时一定大于1*/
if (tso_segs > 1 && !tcp_urg_mode(tp)) /*tso分段大于1且非urg模式*/
limit = tcp_mss_split_point(sk, skb, mss_now, cwnd_quota);/*返回当前skb中可以发送的数据大小,通过mss和cwnd*/
/* 当skb的长度大于限制时,需要调用tso_fragment分片,如果分段失败则暂不发送 */
if (skb->len > limit &&
unlikely(tso_fragment(sk, skb, limit, mss_now))) /*/按limit切割成多个skb*/
break;
TCP_SKB_CB(skb)->when = tcp_time_stamp;
/*发送,如果包被qdisc丢了,则退出循环,不继续发送了*/
if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
break;
/* Advance the send_head. This one is sent out.
* This call will increment packets_out.
*/
/*更新sk_send_head和packets_out*/
tcp_event_new_data_sent(sk, skb);
tcp_minshall_update(tp, mss_now, skb);
sent_pkts++;
if (push_one)
break;
}
if (likely(sent_pkts)) {
tcp_cwnd_validate(sk);
return 0;
}
return !tp->packets_out && tcp_send_head(sk);
}
其中tcp_init_tso_segs会设置skb的gso信息后文分析。我们看到tcp_write_xmit 会调用tso_fragment进行“tcp分段”。而分段的条件是skb->len > limit。这里的关键就是limit的值,我们看到在tso_segs > 1时,也就是开启gso的时候,limit的值是由tcp_mss_split_point得到的,也就是min(skb->len, window),即发送窗口允许的最大值。在没有开启gso时limit就是当前的mss。
l tcp_init_tso_segs
tcp_write_xmit最后会调用ip_queue_xmit发送skb,进入ip层。
ip分片,tcp分段,GSO,TSO
之后的逻辑就是之前另一篇文章中分析的GSO逻辑了。下面我们看下整个协议栈中ip分片,tcp分段,GSO,TSO的关系。我将这个流程由下图表示。
看完本文有收获?请分享给更多人
关注「Linux 爱好者」,提升Linux技能