其他
浮点数为什么不精确?
什么是二进制的小数? 就是形如 101.11 数字,注意,这是二进制的,数字只能是0和1。
101.11 就等于 1 * 2^2 +0 *2^1 + 1*2^0 + 1*2^-1 + 1*2^-2 = 4+0+1+1/2+1/4 = 5.75
下面的图展示了一个二进制小数的表达形式。
从图中可以看到,对于二进制小数,小数点右边能表达的值是 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128 ... 1/(2^n)
现在问题来了, 计算机只能用这些个 1/(2^n) 之和来表达十进制的小数。
我们来试一试如何表达十进制的 0.2 吧。
0.001 =1/8 = 0.125 , 又太小
0.0011 = 1/8 + 1/16 = 0.1875 , 逼近0.2了
0.00111 = 1/8 + 1/16 + 1/32 = 0.21875 , 又大了
0.001101 = 1/8+ 1/16 + 1/64 = 0.203125 还是大
0.0011001 = 1/8 + 1/16 + 1/128 = 0.1953125 这结果不错
0.00110011 = 1/8+1/16+1/128+1/256 = 0.19921875已经很逼近了, 就这样吧。
这就是我说的用二进制小数没法精确表达10进制小数的含义。
那计算机内部具体是怎么表示的呢?
它需要规定长度, 在Java 中, 提供了两种方式: float 和double , 分别是32位和64位。
可以这样查看一下一个float的内部表示(以0.09f为例):Float.floatToRawIntBits(0.09f)
你将会得到:1035489772, 这是10进制的, 转化成二进制, 在前面加几个0补足 32位就是:
0 01111011 01110000101000111101100
你可以看到它分成了3段:第一段代表了符号(s) : 0 正数, 1 负数 , 其实更准确的表达是 (-1) ^0
第二段是阶码(e):01111011 ,对应的10进制是 123
第三段是尾数(M)
你看到了尾数和阶码,就会明白这其实是所谓的科学计数法:(-1)^s * M * 2^e
对于0.09f 的例子,就是:0101110000101000111101100 * (2^123) 好像不对,这肯定远远大于0.09f !
这是因为浮点数遵循的是IEEE754 表示法, 我们刚才的s(符号) 是对的,但是 e(阶码)和 M(尾数)需要变换:
对于阶码e , 一共有8位, 这是个有符号数, 特别是按照IEEE754 规范, 如果不是0或者255, 那就需要减去一个叫偏置量的值,对于float 是127
所以 E = e - 127 = 123-127 = -4
对于尾数M ,如果阶码不是0或者255, 他其实隐藏了一个小数点左边的一个 1 (节省空间,充分压榨每一个bit啊)。即 M = 1.01110000101000111101100
现在写出来就是:1.01110000101000111101100 * 2^-4=0.000101110000101000111101100= 1/16 + 1/64 + 1/128+ 1/256 + .... = 0.0900000035762786865234375
你看这就是0.09的内部表示, 很明显他比0.09更大一些, 是不精确的!
64位的双精度浮点数double是也是类似的, 只是尾数和阶码更长, 能表达的范围更大。符号位 :1位阶码 : 11位尾数: 52位
具体的改进方法推荐大家看看《Effective Java》在第48条所推荐的“使用BigDecimal来做精确运算”。
声明: 原创文章,版权所有,未经授权,禁止转载
你看到的只是冰山一角, 更多精彩文章,尽在码农翻身微信公众号: