Science Bulletin | 固液混合电解质中的离子传输路径
Science Bulletin, 2022, 67(9): 946-954
https://doi.org/10.1016/j.scib.2022.01.026
Lithium-ion spontaneous exchange and synergistic transport in ceramic-liquid hybrid electrolytes for highly efficient lithium-ion transfer
陶瓷液态混合电解质中锂离子自发交换和协同传导实现高效转移
石凯,陈立坤,万子裴,彪捷,钟贵明,李雪,杨璐,马家宾,吕伟,任富增,王红旗, 杨勇,康飞宇,贺艳兵
长按识别二维码,阅读全文
成果简介
陶瓷电解质被广泛用于构建固液混合电解质, 对提升固液混合电池的电化学性能和安全性能具有重要作用. 然而, 固液混合电解质中锂离子的传输机制尤其是陶瓷电解质对离子输运的贡献尚不清楚. 该工作设计了3种陶瓷液态混合电解质,通过固态核磁共振谱追踪锂同位素离子揭示了固液混合电解质中的离子传输路径.
Fig. 1. Illustration of different CLHEs and the corresponding Li-ion transport pathways.
实验结果表明, 在陶瓷液态混合电解质中, 陶瓷电解质能够和液态电解质同时传导锂离子, 并发现陶瓷电解质和液态电解质之间存在自发锂离子交换, 进一步促进了固液混合电解质系统中高效的锂离子传导. 该工作揭示的固液混合传导机制和模型为固液混合电解质和电池的发展提供了理论基础.
图文速览
Fig. 2. Diagram and solid-state NMR test of different samples.
(a) Schematic of different samples for solid-state NMR test.
(b) 6Li NMR of samples 1, 3, and 5. The inset is 6Li relative amount in LLZO electrolyte.
6Li NMR of samples 2, 4 (c) and samples 5, 6 (d).
Fig. 3. Characterizations of Li symmetrical cells and LFP full cells.
(a) Ionic conductivities of DLL, PML, and PLL electrolytes.
(b) EISs of Li/DLL/Li, Li/PML/Li, and Li/PLL/Li symmetric cells.
Long-term cycling and detailed voltage profiles of Li/DLL/Li, Li/PML/Li, and Li/PLL/Li symmetric cells at (c) 0.5 and (d) 1mA cm2.
SEM images of Li metal after 300 h cycling in (e) Li/PLL/Li, (f) Li/DLL/Li, and (g) Li/PML/Li symmetric cells.
(h) Rate and cycling performance of the LFP/DLL/Li, LFP/PLL/Li, and LFP/PML/Li batteries and (i) their voltage profiles at 2 oC.
Fig. 4. Electrochemical characterizations of full cells using NCM as cathode materials.
(a) Schematic of LLZTO as cathode additive to construct Li-ion transport channels.
CV curves of NCM cathode with 2% (b) LLZTO and (c) MgO as additives at different scan rates.
(d) Rate, (e) cycling performance, and (f) voltage profiles of NCM/Li batteries with different cathode additives.
Fig. 5. Electrochemical characterizations of NCM/Li batteries and morphology of cycled lithium metal using different separators.
(a) Schematic of LLZTO as separator coating and Li-ion transport channels.
(b) EIS, (c) rate, and (d) cycling performance of NCM/Li batteries with different separator coatings.
SEM images of Li metal after 60 h cycling using (e) pure separator, (f) MgO coated separator, and (g) LLZTO-coated separator.
通讯作者
钟贵明
研究员,中国科学院大连化学物理研究所。主要从事电化学能源体系和材料的核磁共振方法和应用研究;电化学能源材料结构化学;电化学能源材料的优化设计和合成等。
任富增
研究员,长聘副教授,南方科技大学材料科学与工程系。主要从事新型金属材料及医用植入器械的基础与应用研究。
贺艳兵
长聘副教授(特别研究员),博士生导师,清华大学深圳国际研究生院。主要从事高安全性电池及关键材料体系的研究,以构筑高安全、低阻抗和高稳定电极/液态和固态电解质系统及界面为研究目标,聚焦于解决当前和下一代锂电池中的安全问题。
相关阅读