Science Bulletin: 一种简单的低聚物交联方法实现性能优异的柔性倒置钙钛矿太阳能电池
论文
20
22
速递
Mechanically and operationally stable flexible inverted perovskite solar cells with 20.32% efficiency by a simple oligomer cross-linking method
Nairong Jiang, Bangyu Xing, Yifan Wang, Hanwen Zhang, Da Yin, YuefengLiu, Yangang Bi, Lijun Zhang, Jing Feng, Hongbo Sun
Science Bulletin, 2022, 67(8): 794–802
doi: 10.1016/j.scib.2022.02.010
01
简介
柔性钙钛矿太阳能电池因其在柔性可穿戴电子领域的巨大应用潜力而备受关注. 然而, 钙钛矿薄膜对水氧、温度和光照等外界环境敏感, 同时柔性钙钛矿电池的反复弯折也会加速钙钛矿薄膜光电性能的退化, 导致柔性钙钛矿太阳能电池的工作稳定性和机械稳定性还远不能满足实际应用需求. 本文提出了一种简单的低聚物交联方法, 将三羟甲基丙烷乙氧基化物三丙烯酸酯(TET)作为掺杂剂掺入钙钛矿薄膜, 交联聚合物在钝化和加固钙钛矿晶界的同时, 也促进了钙钛矿晶粒的生长, 柔性钙钛矿电池的效率、工作稳定性和机械稳定性获得了同步提升. 倒置柔性钙钛矿太阳能电池的效率达到20.32%, 85 °C高温500 h、连续光照900 h或4 mm弯曲半径下弯折两万次, 效率均能维持初始值85%以上.
02
图文速览
Fig. 1. Schematic illustrations and surface morphology of cross-linked perovskite films. (a) Schematic illustrations of the TET in-situ cross-linking at the perovskite grain boundaries. Top-view SEM images of perovskite film without (b) and with (c) TET.
Fig. 2. Characteristics of the pristine and 0.5 mg/mL TET-incorporated perovskite films. (a) FTIR spectra of pristine perovskite, TET-incorporated perovskite and pure TET films. (b) XRD patterns of the pristine and TET-incorporated perovskite films. (c) TRPL decay spectra the pristine and TET-incorporated perovskite films. (d) Dark I–V curves of the electron-only devices with the structure of PEN/ITO/C60/Perovskite/C60/BCP/Cu. (e) Energy-level diagram for the pristine and TET-incorporated perovskite films.
Fig. 3. The absorption of the TET and PMMA on the surface of perovskite by DFT calculations. The most stable combination of TET (a) and PMMA (b) on the Pb2+ exposed FAPbI3 perovskite slab with calculated binding energy (only a branch of TET was used because of the scale). The O-Pb distance and the partial atomic charge of Pb2+ ions are also indicated in (a) and (b). Charge densities of TET (c) and PMMA (d), and ELF plots of TET (e) and PMMA (f) on the perovskite.
Fig. 4. The structure and photovoltaic performance of the FPSCs. (a) Structure schematic of the FPSCs. (b) Cross-sectional SEM image of the TET-FPSC. (c) The current density–voltage curves of champion pristine and TET-FPSCs in both reverse and forward scan. The inset in (c) shows the photograph of the FPSCs. (d) The corresponding EQE spectra of FPSCs. (e) steady-state photocurrent and PCE of the pristine and TET-FPSCs measured under a constant bias voltage of 0.857 or 0.934 V, respectively. (f) Histograms of the PCE for 20 pristine and 20 TET-FPSCs, respectively.
Fig. 5. The characteristics of the FPSCs. (a) The dependence of VOC on light intensity for FPSCs with and without TET. (b) The FF limitation of FPSCs involve non-radiative loss (orange area) and charge transport loss (blue area). The solid and hollow circles stand for the measured FF and the maximum FF without charge transport loss, respectively. (c) Mott-Schottky plots of pristine and TET-FPSCs. (d) Transient photovoltage (TPV), (e) transient photocurrent (TPC), and (f) Photo-CELIV current transients of the FPSCs with and without TET.
Fig. 6. Operational and mechanical stability of the FPSCs. (a) Normalized PCEs of the unencapsulated FPSCs at a fixed temperature of 85 °C in a nitrogen atmosphere. (b) Normalized PCEs of the FPSCs under continuous light irradiation with a white LED lamp, 100 mW/cm2 in a relative humidity of about 10%–15%, and a temperature of about 20–25 °C. (c) Normalized PCEs of the unencapsulated FPSCs as a function of bending cycles with bending radius of 4 mm.
03
本文通讯作者
张立军 教授 吉林大学材料科学与工程学院. 主要研究方向: 材料计算机模拟、新材料设计、半导体光电材料、半导体材料物理、新能源材料.
冯晶 教授 吉林大学电子科学与工程学院. 主要研究方向: 面向可穿戴电子、柔性显示和新型能源技术的有机电致发光、有机和钙钛矿光伏、有机激光器件研究.
孙洪波 教授 清华大学精密仪器系. 研究超快激光与物质相互作用机理,制备微光学、微电子、微机械、微流控、微光电、传感、生物和仿生结构与器件;开拓超快光谱研究方法,探索前沿光电和电光转换动力学.
03
相关阅读