查看原文
其他

PyHubWeekly | 第二期:GitHub上优质的Python项目

Jackpop 平凡而诗意 2022-08-19

点击蓝字关注我

上一周,我写了一篇总结GitHub上优质Python项目的文章,文章发出之后在公众号和知乎受到很多同学的喜爱和认可,这有一些出乎我的意料。于是,经过反复思索,我决定后续开设一个模块PyHubWeekly,每周更新一次,介绍一些有趣、实用的项目,对于这个模块,我的想法是不追求数量而追求质量,不会为了拼凑数量而一味的去美化一个项目。

—▼—

前言

上一周,我写了一篇总结GitHub上优质Python项目的文章,文章发出之后在公众号和知乎受到很多同学的喜爱和认可,这有一些出乎我的意料。

思索一下,这的确是一件很值得去做的事情。这一年来我养成了一个每天逛一逛GitHub的习惯,因为我个人对新鲜事物充满着好奇心,或者是有趣的项目、或者是实用的小工具,我期望能够在GitHub上能够遇到我想要的东西。

GitHub是一个鱼龙混杂的地方,上面的确有很多不错的开源项目,但是,更多的是一些灌水的项目,例如,某些教育机构的大作业,例如,那些每天刷榜的中文无聊的项目。因此,虽然我每天都会花费一部分时间去浏览GitHub,但是真正让我内心觉得这个项目“不错”的却少之又少。我想,也许这就是为什么我上一篇文章受到认可的原因吧。

既然这样,我想倒不如花费一部分精力去开辟一些专门介绍GitHub上优质Python项目的版块,名称就叫PyHubWeekly,主要宗旨有两点:

  • 每周更新一次

  • 精选GitHub上优质Python项目

对于这个模块,我的想法是不追求数量而追求质量,换句话说,也许有的时候能介绍10个项目,有的时候只介绍1个项目,不会为了拼凑数量而一味的去美化一个项目,把它描绘的天花乱坠。也许有一天Python被淘汰了,而且优质的项目有穷有尽,再或者各位关注者对于这类文章失去了兴趣,那样的话,PyHubWeekly这个版块也就走到了尽头。

另外,针对PyHubWeekly,我的定位是通过每篇文章去介绍一些有趣,值得去了解的GitHub项目,因此,对于每个项目不会去深入介绍,会简单的介绍一些它的功能以及它的特点。如果其中我个人认为哪个项目非常不错,或者各位同学对于哪个项目特别感兴趣,我会单独再写一篇详细介绍这个项目的文章。

当然,无论写哪方面的文章,出发点都会坚持自己的初心,坚持原创、坚持与众不同,希望自己分享能够切实的帮助到需要的同学。

下面就开始介绍本期的5个项目。

1. Gooey

Star:8.5k

链接:https://github.com/chriskiehl/Gooey

这是一个将Python 2或3控制台程序转换为GUI应用程序工具,

Gooey通过简单的在argarse上调用装饰器的方式就可以实现程序的界面化,如果需要进行更精细的调整,则可以使用嵌入式替换GooeyParser代替ArgumentParser,

2. memory_profiler

Star:2k

链接:https://github.com/pythonprofilers/memory_profiler

Python是一门相对简单的编程语言,这里所说的简单是指入门简单。因此,很多人忽略了程序底层的内容,例如,空间复杂度、时间复杂度等。对于很多人来说写完程序能够跑通即可,但是一个好的程序要兼备考虑程序的复杂度、内存占用等。

这是一个依赖于psutil的python模块,用于监视进程的内存消耗,以及对python程序的内存消耗进行逐行分析。

@profile
def my_func():
    a = [1] * (10 ** 6)
    b = [2] * (2 * 10 ** 7)
    del b
    return a

if __name__ == '__main__':
    my_func()

执行程序,

$ python -m memory_profiler example.py
Line #    Mem usage  Increment   Line Contents
==============================================
     3                           @profile
     4      5.97 MB    0.00 MB   def my_func():
     5     13.61 MB    7.64 MB       a = [1] * (10 ** 6)
     6    166.20 MB  152.59 MB       b = [2] * (2 * 10 ** 7)
     7     13.61 MB -152.59 MB       del b
     8     13.61 MB    0.00 MB       return a

3. pyecharts

Star:7.8k

链接:https://github.com/pyecharts/pyecharts

在Python开发中,提到画图应该十有八九会想到matplotlib,它是一个老牌且强大的绘图库,但是,在使用过程中有一些弊端,例如,不适合离线查看、支持的绘图接口较为单一。

Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。它能够把绘图结果保存为一个html文件,能够动态展示绘图结果,且随时可以打开查看。另外,它支持的绘图类型非常丰富。

4. wtfpython

Star:18.6k

链接:https://github.com/satwikkansal/wtfpython

wtfpython这个Python项目两年前就有所耳闻,首先说一下它的全名,比较粗俗“What the f*ck Python!”,就如同前面所说的那样,虽然很多人认为Python非常容易,但是它也有很多不为人知的特性。
有很多点按照我们的理解应该是这样的,但是当运行之后却发现和我期望的结果有很大出入,具体问题出现在哪了,却很难找出来。wtfpython这个项目就总结了这些不为人知的特性,能够让你发现更多Python令人惊奇的地方。
例如,下面这个例子,

some_dict = {}
some_dict[5.5] = "Ruby"
some_dict[5.0] = "JavaScript"
some_dict[5] = "Python"

输出,

>>> some_dict[5.5]
"Ruby"
>>> some_dict[5.0]
"Python"
>>> some_dict[5]
"Python"

按照正常的结果some_dict[5.0]不是应该输出“JavaScript”吗?为什么输出了“Python”?下面就是解释,

5. tqdm

Star:12.9k

链接:https://github.com/tqdm/tqdm

tqdm是一个Python进度条工具,如果刚开始学习Python时,我会对它不屑一顾,编程语言本身还没有学明白,为什么要用这些花里胡哨的东西?简直就是鸡肋!

但是,当开发项目久了以后才发现,它有着不可替代的价值。就如同我们排号吃饭一样,我们希望实时的监控着当前事件进行到什么程度了,Python开发也是这样,我们不能一直把它挂在那里,留给我们一个空白的shell,具体是进程死掉了,还是读数据库时出现了问题,都不清楚,有着这个进度条,能够对我们的运行过程一目了然。

END


有趣的灵魂在等你

长按扫码可关注 


相关文章
实用工具 | 2款播放器让你免费听遍全网无损音乐大数据 | Spark机器学习工作流开发指南实用工具 | 你距离PS大神只差这6款免费在线工具!简易教程 | 分布式消息发布订阅系统Kafka从搭建到使用教程 | 一文搭建你的第一个免费专属博客
文章好看就点这里

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存