其他
Python受欢迎的主要原因之一就是它丰富的工具包,画图是我们在开发过程中非常常见的一种场景,因此,画图工具自然不胜枚举。其中,比较知名的就是matplotlib[1],它可以覆盖我们日常工作中大多数场景。但是,它自身也有诸多弊端,例如,对新手不够友好、多图展示和离线查看比较麻烦。本文就来介绍一下另一款强大的Python画图工具--pyecharts,它可以作为matplotlib的有力补充。前言可视化是一种给人最直观感受的方式,当我们做数据分析、算法验证、效果展示时,绘图就成了一种非常有必要的手段。就如同,我们要看近几个月的股票走势,当看到成千上百个连续数据点时,很难从中发掘出什么规律,但是,当把它按照一定维度绘制出来,就能对股票的走势一目了然。提到Python绘图,很多人第一时间会想到matplotlib,的确,它是Python中使用最多、应用最为广泛的一款Python工具包。但是,在使用matplotlib的过程中我也感受到了一些让我觉得不足的场景:•多图展示•离线查看•动态效果•图像种类多图展示当我需要把多张数据结果在同一个画布上展示出来时,就需要结合循环、subplotlib等方式,而且需要代码冗长,另外,最为重要的是当展示在同一张画布时灵活度较小,而且图像大小会受到一定局限。离线查看在有些时候,使用matplotlib绘图,窗口会随着程序的终止而自动销毁,虽然可以借助matplotlib中保存图像的函数解决问题,但是保存后会损失掉原图像中的部分信息,例如,动态效果。动态效果有些时候需要绘制三维等复杂图像,或者自带动态效果的图像,由于matplotlib的UI是基于比较老的tkinter开发的,所以,会出现明显的卡顿和不流畅现象。图像种类matplotlib能够满足我们日常工作中大多数场景,它包含柱状图、散点图、折线图等等,能够满足大多数数据分析的场景。但是在一些特殊场景却捉襟见肘,例如,地图、仪表盘、水球图、词云图。因此,本文就来介绍另一款强大的绘图工具pyecharts[2]。在介绍pyecharts之前首先来了解一下Echarts。Echarts技术栈中和可视化最为密切的应该就数JavaScript了,当我们浏览网页、使用基于js开发的分发工具时,会被它的可视化效果惊艳到,因此,能够利用JavaScript开发一款图表工具?Echarts的回答是肯定的。ECharts,缩写来自