陈景润究竟为证明哥德巴赫猜想做出了哪些贡献? | 科学大院
The following article is from 科学大院 Author 铸雪
关注风云之声
提升思维层次
导读
对不少人来说,知道哥德巴赫猜想,离不开两个人,陈景润和徐迟。后者那篇著名的报告文学,让很多人知道了有位中国数学家,用了几大麻袋演算纸,将哥德巴赫猜想的证明往前推进了一步。但陈景润在这个领域取得了多大的进展呢?让我们从哥德巴赫猜想本身说起。
注:风云之声内容可以通过语音播放啦!读者们可下载讯飞有声APP,听公众号,查找“风云之声”,即可在线收听~
对不少人来说,知道哥德巴赫猜想,离不开两个人,陈景润和徐迟。后者那篇著名的报告文学,让很多人知道了有位中国数学家,用了几大麻袋演算纸,将哥德巴赫猜想的证明往前推进了一步。
但陈景润究竟在这个领域取得了多大的进展呢?让我们从哥德巴赫猜想本身说起。
源起:素数引发的悬案
今天故事的发端,就是这类被称为“素数”的数字。早在古埃及时代,人们似乎就已经意识到了素数的存在[1]。而古希腊的数学家们很早就已经开始对素数进行系统化的研究。例如欧几里得在《几何原本》中就已经证明了无限多个素数的存在[2]以及算术基本定理(即正整数的唯一分解定理,指出任何大于1的自然数都可以唯一地写成若干个质数的乘积)[3]。而埃拉托斯特尼提出的筛法则为找出一定范围内所有的素数提供了可行的思路[4]。
古希腊数学家、“几何学之父”欧几里得(左)与数学家、地理学家、天文学家埃拉托斯特尼(右)。前者在其著作《几何原本》中提出五大公设,成为欧洲数学的基础。后者设计出了经纬度系统,并计算出地球的直径。
图片来源:wikipedia
埃拉托斯特尼筛法。筛法的原理十分简单,计算者从2开始,将每个素数的倍数筛出,记作合数。埃拉托斯特尼筛法是列出所有小素数最有效的方法之一。图片来源:wikipedia
将偶数表示为两个素数的和。截至2012年4月,数学家已经验证了4乘以10的18次方以内的偶数,没有发现哥德巴赫猜想的反例[5]。
图片来源:wikipedia
任一大于2的偶数,都可表示成两个素数之和。
这也是现在哥德巴赫猜想的通常表述方式,其亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。欧拉认为可以将这一猜想视为定理,只可惜他也无法给出猜想的证明。
哥德巴赫信件的手稿
图片来源:www.mscs.dal.ca
任一大于5的奇数都可写成三个素数之和。
这也称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。当然如果“强哥德巴赫猜想”可以被证明,“弱哥德巴赫猜想”也就迎刃而解。
沉寂:难以逾越的高山
哥德巴赫猜想一直以来都深受业余数学爱好者的青睐,一个很重要的原因就是其表述十分简洁易懂。然而猜想的证明实际上是极为困难的。自1742年猜想被正式提出后的160余年里,数学家苦苦探寻,都没有取得任何实质性的进展,更多的只是提出一些等价的命题,或者是对猜想进行数值验证。
1900年,著名数学家希尔伯特在第二届国际数学家大会上提出的著名的二十三个问题,其中第八个问题就涉及三个有关素数的猜想:黎曼猜想、哥德巴赫猜想和孪生素数猜想。至今上述三个猜想的研究虽然较20世纪初已经有了长足的进展,甚至有弱化的情况已经被证明,但三个问题本身均仍未被解决。
参加学术会议的希尔伯特。1900年,希尔伯特在巴黎举行的第二届国际数学家大会上作了题为《数学问题》的演讲,提出了23个最重要的数学问题。希尔伯特问题在相当一段时间内引导了世界数学研究的方向,有力地推动了20世纪数学的发展。在许多数学家努力下,希尔伯特问题中的大多数在20世纪中得到了解决。
图片来源:The Oberwolfach Photo Collection
突破:划破夜空的曙光
问题真正的实质性进展出现在二十世纪20年代。当时出现了两种代表性的思路,一种是英国数学家哈代与李特尔伍德在1923年论文中使用的“哈代-李特尔伍德圆法”[6],另一种是挪威数学家布朗(Viggo Brun)使用的“布朗筛法”[7,8]。
哈代(左)、李特尔伍德(中)与布朗(右)。哈代,英国数学家,二十世纪英国分析学派的代表人物,其研究对后世分析学和数论的发展有深刻的影响。李利特尔伍德,英国数学家,研究领域涵盖数论和数学分析,与哈代有着长达35年的合作。布朗,挪威数学家,其在数论领域的工作极大地推动了哥德巴赫猜想和孪生素数猜想等的研究。
图片来源:wikipedia、U of St And
圆法
哈代-李特伍德圆法是现代数论中最常被使用的技术之一。这一思路源于拉马努金与哈代在1916年前后有关整数分拆渐进分析的研究。首先考察沿着单位圆的路径积分
如果m取整数,上式的值一般为0——唯一的例外是当m = 0时,上式等于1。让我们考察积分式
式中p1和p2分别代表两个素数。考虑到哥德巴赫猜想的形式,将p1+p2 = N 这一条件融入上式,我们有
显然是上式的第二项等于0,所以我们得到
也就是第一项积分的值。对于哥德巴赫猜想而言,我们只需要证明当N为任意大于等于6的偶数时,单位圆上的路径积分D(N)>0。因此,哥德巴赫猜想就可以归结为研究积分式D(N)中以素数p为参数的三角多项式exp(2πipt)。
而哈代等人认为当t与分母较小的既约分数时接近时,
筛法
筛法是数论的一类基本研究方法,其研究对象是某个被“筛选”过的有限整数子集的元素个数[9]。某种意义上来说,布朗筛法的原型可以追溯到前面介绍的埃拉托斯特尼筛法。给定一个需要筛选的对象集合A,一个用来作为筛子的素数集P = {p1, p2, …, pn,…} 以及范围z。令
同时定义筛函数
表示集合A中所有与P(z)互质的元素的个数,其中a表示集合A的元素。空心字母“I”为指示函数,a与P(z)互质(即 (a,P(z)) = 1)时,函数值为1。筛函数S表示筛去了素数集P中小于z的素数的所有倍数之后剩下的数字的个数。这一思路与前面介绍的埃拉托斯特尼筛法一脉相承。
接下来,布朗提出了“殆素数”的概念,即“由少量素因数相乘得到的合数”。令P为全体素数的集合,N为充分大的偶数,同时令
则筛函数S(A,P,z)就是数对n与N - n的个数,其中n与N - n满足
即x为λ向上取整后减1。所以对于x而言,筛函数 S(A,P,z) > 0,则意味着所有充分大的偶数(N)都能表示成两个数(n与N - n)的和,且两个数的素因数个数都不超过x个,即所谓“x+x”。
冲刺:鼓舞人心的号角
上文提到的两种思路都在二十世纪都得到了极大的发展。这也极大地推动了哥德巴赫猜想和弱哥德巴赫猜想的证明工作。1937年苏联数学家维诺格拉多夫(Ivan Vinogradov)在对于弱哥德巴赫猜想研究中取得了重大的突破[10]。他在圆法的基础上,去掉了哈代和李特尔伍德证明中对于广义黎曼猜想的依赖,完全证明了“充分大的奇素数都能写成三个素数的和”,即“哥德巴赫-维诺格拉多夫定理”。不过维诺格拉多夫无法给出“充分大”的下限,所以找到这一下限便成为了弱哥德巴赫猜想研究的主要方向。2013年秘鲁数学家哈洛德·贺欧夫各特(Harald Andrés Helfgott)成功将维诺格拉多夫“充分大”的下限缩小至10的29次方左右,通过计算机验证在此之下的所有奇数,结果无一例外都符合猜想,从而最终完成了弱哥德巴赫猜想的证明[11]。
维诺格拉多夫(左)与哈洛德·贺欧夫各特(右)。伊万·马特维耶维奇·维诺格拉多夫,苏联解析数论专家,斯捷克洛夫数学研究所所长。哈洛德·贺欧夫各特,秘鲁数学家,法国国家科学研究院和巴黎高等师范学院研究员。
图片来源:wikipedia
拉德马赫(左)与埃斯特曼(右)
图片来源:Math Gene Proj、Oxford Univ. Press
塞尔伯格(左)与布赫希塔布(右)。阿特勒·塞尔伯格,挪威数学家。研究方向涵盖解析数论,以及自守形式理论。获得1950年的菲尔兹奖和1986年的沃尔夫数学奖。亚历山大·布赫希塔布,苏联数论专家,以其对筛法的研究而闻名。
图片来源:wikipedia、liveinternet.ru
最早取得突破的是匈牙利数学家阿尔弗雷德·伦伊(Alfréd Rényi)[16]。他率先定性地证明了命题“1+x”,但却没能给出x的具体值。而在这一领域里,我国老一辈数学家取得了卓越的成绩。1962年潘承洞利用伦伊的思路成功证明了“1+5”,同年王元指出潘承洞的结论实则可以推出“1+4”。
中国解析数论学派。左上:华罗庚,右上:王元,下:潘承洞与潘承彪。“中国解析数论学派”指以华罗庚为代表的数论学派,该学派对于质数分布与哥德巴赫猜想作出了许多重大贡献。华罗庚,中国科学院院士,美国国家科学院外籍院士。他是我国解析数论、典型群、矩阵几何、自守函数论与多元复变函数等领域研究的创始人与奠基者,也是中国在世界上最具影响力的数学家之一。王元,中国科学院院士。他首先将解析数论中的筛法用于哥德巴赫猜想的研究。潘承洞,中科院院士,以哥德巴赫猜想的研究闻名。他首先确定命题“1+x”中x的具体数值,并证明命题“1+5”和“1+4”成立。潘承彪,中科院院士,著名数论学家,潘承洞胞弟,亦是数论学家张益唐在北京大学时的研究生导师。
图片来源:U of St And、财新网
加权筛法与“1+2”的证明
这里我们沿用上文“筛法”部分的设定,定义
再定义A中所有素因子数不超过x的集合为
那么我们有
这里让我们回忆经典的布朗筛法中,定义筛函数为
此处我们假设
加权筛法由下式给出
其中Card()表示集合的元素个数,不等式右侧第一项即是所谓“加权筛”,且有
上面的ρ1(a)和ρ2(a)就是所谓的权函数(即将每一个元素a通过权函数加权),整个不等式就是对加权筛的估计。进一步,令
我们就可以证明
其中
由于上述不等式的右侧大于0,这也就证明了命题“1+2”。
陈景润,福建福州人,大学毕业于厦门大学数学系。1953年到1954年被分配至北京市第四中学任教,后被“停职回乡养病”。1954年,调回厦大任资料员,同时开展数论研究,次年担任助教。1957年9月,华罗庚安排把陈景润调入中国科学院数学研究所。1966年,证明了“1+2”(陈氏定理)。
图片来源:财新网
王元(左)、陈景润(中)与潘承洞(右)
图片来源:财新网
展望:未完待续的旅行
近年来,数论这一学科的研究中心似乎也在慢慢转移,哥德巴赫猜想的研究热度相对上个世纪中叶也有所下降。不过数学家对于以哥德巴赫猜想为代表的素数相关问题的研究从来没有停止。比较著名的有前面提到的黎曼猜想以及孪生素数猜想。
黎曼猜想
黎曼猜想由德国数学家黎曼于1859年提出的,有“猜想界皇冠”之称。猜想表述为:对于黎曼ζ函数
非平凡零点(即s不等于-2、-4、-6等)的实数部分是1/2。
事实上,黎曼猜想传统表述在某种意义上隠藏了其的真正重要性。黎曼ζ函数与素数的分布有着千丝万缕的联系。一般认为,素数在自然数中的分布并没有特别的规律可循,但黎曼猜想却有助于人们重新认识素数的分布规律。
自被正式提出以来,有许多数学家投入到了黎曼猜想的研究当中,还有不少人声称证明了黎曼猜想,但这些证明基本都被证明是有漏洞的甚至是完全错误的。最近一次有关的事件是2018年9月24日迈克尔·阿蒂亚爵士声称自己证明了黎曼猜想。他用精细结构常数作为一个主要成分用以证明,然而用物理观测数字证明纯数学领域的命题本身就引发了很大的争议。美国克雷数学研究所为第一个证明黎曼猜想的人设立了一百万美元的奖金。但要找到这位奖金的获得者显然还有很长的路要走。
孪生素数猜想
孪生素数猜想的表述十分简洁:
存在无穷多个素数p,使得p + 2是素数。
但其证明却并不容易。最新的进展是,华裔数学家张益唐证明存在无穷多个素数对相差都小于7000万,即
尽管这与原命题“存在无穷多个素数对相差都等于2”貌似还有很大的距离,但张益唐的研究实则跨越了孪生素数猜想中最大的鸿沟,即实现了从“无穷”到“有限”的飞跃,从而使得问题的研究有了实质性的进展。著名数学家陶哲轩通过Polymath计划,通过网上的志愿者合作计算,降低张益唐论文中的素数差的上限[20]。截至张益唐提交证明之后一年,该上限已降至246。
如今不少人谈数学而色变,不仅对于普通人,对于很多科技工作者来说也是这样,希望千方百计地绕开数学这匹“猛兽”。为此不少数学家绞尽脑汁,要找出数学和日常生活的种种联系。
其实,一方面数学本就与世界的发展密不可分,另一方面快节奏的时代追求“经世致用”本也无可非议。只不过笔者此处更希望从数学本身来看待其存在的意义。如哈代所言,“数学家与画家和诗人一样,是模式的创造者”,数学本身是有其美感存在的。数学界追求真理的旅行,就是发现和创造美的旅行。中科院物理所的曹则贤老师曾在他的书里提到,“读数学、物理书和看小说一样,并非完全能看懂的就是好的”[2]。但愿本文的读者也不会被文中偶尔蹦出来的公式吓到,而是可以透过这些繁杂的演算获得属于自己的思考。
“人是一株会思考的芦苇。”没有了思考,人类终将失去存在的意义。
扩展阅读:
理解黎曼猜想(一)背景 | 袁岚峰理解黎曼猜想(二)两个自然数互质的概率是多少?| 袁岚峰理解黎曼猜想(三)你真的相信全体自然数的和等于-1/12吗?| 袁岚峰
理解黎曼猜想(四)得救之道,就在其中 | 袁岚峰
理解黎曼猜想(五)宇宙的密码 | 袁岚峰
理解黎曼猜想(六)朝闻道 | 袁岚峰
质数的最小间隔有上限,人的奋斗没有上限 | 袁岚峰
参考文献:
[1] Gillings, R. J. (1974). The Recto of the Rhind mathematical papyrus how did the ancient Egyptian scribe prepare it. Archive for History of Exact Sciences, 12(4), 291-298.
[2] 曹则贤 (2019). 惊艳一击:数理史上的绝妙证明. 北京:外语教学与研究出版社.
[3] Stillwell, J . (2010) Mathematics and its history. New York: Springer-Verlag.
[4] Pomerance, Carl (1982). The Search for Prime Numbers. Scientific American. 247 (6): 136–147.
[5] Weisstein, Eric W. "Goldbach Conjecture." From MathWorld--A Wolfram Web Resource. https:// mathworld.wolfram.com/ Goldbach Conjecture.html.
[6] Hardy, G. H. and Littlewood, J. E. (1923). Some Problems of Partitio Numerorum (III): On the expression of a number as a sum of primes. Acta Mathematica. 44: 1–70.
[7] Viggo Brun (1919). "La série 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/29 + 1/31 + 1/41 + 1/43 + 1/59 + 1/61 + ..., où les dénominateurs sont nombres premiers jumeaux est convergente ou finie". Bulletin des Sciences Mathématiques. 43: 100–104, 124–128.
[8] 王元 (1984). The Goldbach Conjecture. New Jersey: World Scientific.
[9] Halberstam, Heini and Richert, Hans-Egon. Sieve Methods. London Mathematical Society Monographs 4. London-New York: Academic Press. 1974.
[10] 潘承洞,潘承彪 (1981). 哥德巴赫猜想. 北京:科学出版社.
[11] Helfgott, H. A. (2013). Major arcs for Goldbach's problem. arXiv preprint arXiv:1305.2897.
[12] Rademacher, H. (1924, December). Beiträge zur viggo brunschen methode in der zahlentheorie. In Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg (Vol. 3, No. 1, pp. 12-30). Springer-Verlag.
[13] Estermann, T. (1932). Eine neue Darstellung und neue Anwendungen der Viggo Brunschen Methode. Journal für die reine und angewandte Mathematik, 1932(168), 106-116.
[14] Kuhn, P. (1941). Zur Viggo Brun'schen Siebmethode. I. Norske Vid. Selsk. Forh., Trondhjem, 14, 145-148.
[15] Selberg, A. (1984). On an elementary method in the theory of primes. In Goldbach Conjecture (pp. 151-154).
[16] "On the representation of even numbers as sums of a prime and an almost prime number,"Izv. Akad. Nauk. SSSR Ser. Mat., Vol. 12 (1948), pp. 57-78. (In Russian.)
[17] 陈景润. On the representation of a large even integer as the sum of a prime and the product of at most two primes. 科学通报(英文版). 1966, (9): 385–386.
[18] 陈景润. 大偶数表为一个素数及一个不超过二个素数的乘积之和. 中国科学A辑. 1973, (2): 111–128.
[19] 徐迟. 哥德巴赫猜想. 人民文学. 1978, (1): 53–68.
[20] https://asone.ai/polymath/ index.php?title=Bounded _gaps _between_primes.
本文由科普中国融合创作出品,铸雪制作,中国科学院计算机网络信息中心监制,“科普中国”是中国科协携同社会各方利用信息化手段开展科学传播的科学权威品牌。
版权说明:未经授权严禁任何形式的媒体转载和摘编,并且严禁转载至微信以外的平台!
背景简介:文章2020年4月16日发表于微信公众号 科学大院(陈景润究竟为证明哥德巴赫猜想做出了哪些贡献?),风云之声获授权转载。 责任编辑:孙远