其他
10行Python代码能实现什么高端操作?
The following article is from ZackSock Author ZackSock
生成二维码
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ myqr
from MyQR import myqr # 注意大小写
myqr.run(words='http://www.baidu.com') # 如果为网站则会自动跳转,文本直接显示,不支持中文
from MyQR import myqr
myqr.run(
words='http://www.baidu.com', # 包含信息
picture='lbxx.jpg', # 背景图片
colorized=True, # 是否有颜色,如果为False则为黑白
save_name='code.png' # 输出文件名
)
生成词云
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ wordcloud
from wordcloud import WordCloud
wc = WordCloud() # 创建词云对象
wc.generate('Do not go gentle into that good night') # 生成词云
wc.to_file('wc.png') # 保存词云
批量抠图
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
pip install -i https://mirror.baidu.com/pypi/simple paddlehub
import os, paddlehub as hub
humanseg = hub.Module(name='deeplabv3p_xception65_humanseg') # 加载模型
path = 'D:/CodeField/Workplace/PythonWorkplace/GrapImage/' # 文件目录
files = [path + i for i in os.listdir(path)] # 获取文件列表
results = humanseg.segmentation(data={'image':files}) # 抠图
文字情绪识别
import paddlehub as hub
senta = hub.Module(name='senta_lstm') # 加载模型
sentence = [ # 准备要识别的语句
'你真美', '你真丑', '我好难过', '我不开心', '这个游戏好好玩', '什么垃圾游戏',
]
results = senta.sentiment_classify(data={"text":sentence}) # 情绪识别
# 输出识别结果
for result in results:
print(result)
{'text': '你真美', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.9602, 'negative_probs': 0.0398}
{'text': '你真丑', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.0033, 'negative_probs': 0.9967}
{'text': '我好难过', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.5324, 'negative_probs': 0.4676}
{'text': '我不开心', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.1936, 'negative_probs': 0.8064}
{'text': '这个游戏好好玩', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.9933, 'negative_probs': 0.0067}
{'text': '什么垃圾游戏', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.0108, 'negative_probs': 0.9892}
识别是否带了口罩
import paddlehub as hub
# 加载模型
module = hub.Module(name='pyramidbox_lite_mobile_mask')
# 图片列表
image_list = ['face.jpg']
# 获取图片字典
input_dict = {'image':image_list}
# 检测是否带了口罩
module.face_detection(data=input_dict)
简易信息轰炸
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ pynput
from pynput import mouse
# 创建一个鼠标
m_mouse = mouse.Controller()
# 输出鼠标位置
print(m_mouse.position)
import time
from pynput import mouse, keyboard
time.sleep(5)
m_mouse = mouse.Controller() # 创建一个鼠标
m_keyboard = keyboard.Controller() # 创建一个键盘
m_mouse.position = (850, 670) # 将鼠标移动到指定位置
m_mouse.click(mouse.Button.left) # 点击鼠标左键
while(True):
m_keyboard.type('你好') # 打字
m_keyboard.press(keyboard.Key.enter) # 按下enter
m_keyboard.release(keyboard.Key.enter) # 松开enter
time.sleep(0.5) # 等待 0.5秒
识别图片中的文字
import pytesseract
from PIL import Image
img = Image.open('text.jpg')
text = pytesseract.image_to_string(img)
print(text)
绘制函数图像
import numpy as np
from matplotlib import pyplot as plt
x = np.arange(1,11) # x轴数据
y = x * x + 5 # 函数关系
plt.title("y=x*x+5") # 图像标题
plt.xlabel("x") # x轴标签
plt.ylabel("y") # y轴标签
plt.plot(x,y) # 生成图像
plt.show() # 显示图像
人工智能
while(True):
question = input()
answer = question.replace('吗', '呢')
answer = answer.replace('?', '!')
print(answer)
你好吗?
我好呢!
你吃饭了吗?
我吃饭了呢!
你要睡了吗?
我要睡了呢!
References
[2] Python自然语言处理只需要5行代码:
推荐阅读 你点的每个“在看”,我都认真当成了AI
你点的每个“在看”,我都认真当成了AI