查看原文
其他

CNS图表复现08—肿瘤单细胞数据第一次分群通用规则

生信技能树 单细胞天地 2022-06-06

分享是一种态度



回顾

我们的CNS图表复现之旅已经开始,前面6讲是;

如果你也想加入交流群,自己去:你要的rmarkdown文献图表复现全套代码来了(单细胞)找到我们的拉群小助手哈。

正文

文章的第一次分群按照 :

  • immune (CD45+,PTPRC),
  • epithelial/cancer (EpCAM+,EPCAM),
  • stromal (CD10+,MME,fibo or CD31+,PECAM1,endo)

的表达量分布,文章提到的各大亚群细胞数量是:(epithelial cells [n = 5,581], immune cells [n = 13,431], stromal cells [n = 4,249]).  我们可以很容易复现出来

首先检查第一次分群的4个基因

rm(list=ls())
options(stringsAsFactors = F)
library(Seurat)
library(ggplot2)
load(file = 'first_sce.Rdata')
sce=sce.first 
# epithelial/cancer (EpCAM+,EPCAM),   
# immune (CD45+,PTPRC), 
# stromal (CD10+,MME,fibo or CD31+,PECAM1,endo)  
genes_to_check = c("PTPRC","EPCAM",'PECAM1','MME',"CD3G","CD3E""CD79A")
p <- DotPlot(sce, features = genes_to_check,
             assay='RNA' )  
p

出图如下:

肉眼可以看到的分群如下:

> imm # immune (CD45+,PTPRC), 
 [1] "0"  "1"  "2"  "10" "11" "14" "16" "17" "19" "21" "5" 
> epi # epithelial/cancer (EpCAM+,EPCAM), 
[1] "3"  "8"  "9"  "12" "15" "17" "18" "20" "22"
> stromal
[1] "4"  "6"  "7"  "13" "23" "24"

得到的细胞数量也跟文章差不多:

sce@meta.data$immune_annotation <-ifelse(sce@meta.data$seurat_clusters  %in% imm ,'immune',
                                         ifelse(sce@meta.data$seurat_clusters  %in% epi ,'epi','stromal') )
# MAke a table 
table(sce@meta.data$immune_annotation)
# The resulting cell clusters were annotated as immune, stromal (fibroblasts, endothelial cells, and melanocytes), or epithelial cells 
# (epithelial cells [n = 5,581], immune cells [n = 13,431], stromal cells [n = 4,249]).

我们的数量是:

> table(sce@meta.data$immune_annotation)
    epi  immune stromal 
   5444   13792    4278 

第一次分群后,继续看文章列出来了的各种基因的在这3个主要的细胞亚群表达情况,代码如下:

genes_to_check = c("PTPRC","EPCAM","CD3G","CD3E""CD79A""BLNK","MS4A1""CD68""CSF1R"
                   "MARCO""CD207""PMEL""ALB""C1QB""CLDN5""FCGR3B""COL1A1")
# All on Dotplot 
p <- DotPlot(sce, features = genes_to_check,group.by = 'immune_annotation') + coord_flip()
p

出图如下:

可以说是非常完美啦!

看了大概一百多篇,基本上都是首先区分成为:上皮细胞、免疫细胞、内皮细胞和成纤维细胞

比如2020年9月24日,来自新加坡基因组研究院的Ramanuj DasGupta团队在Cell上在线发表题为“Onco-fetal Reprogramming of Endothelial Cells Drives Immunosuppressive Macrophages in Hepatocellular Carcinoma”的文章,绘制了一张人类肝脏从发育到疾病的单细胞图谱,揭示了一个可以同时驱动胎肝发育和HCC的免疫抑制的肿瘤-胚胎重编程生态系统,为HCC的治疗干预提供了新靶点。也是首先区分成为:上皮细胞、免疫细胞、内皮细胞和成纤维细胞,如下:

最简单的比较,就是不同细胞亚群在不同的生物学分组的单细胞样品的比例差异,其次是各种各样的差异表达量分析。然后可以对第一次得到上皮细胞、免疫细胞、内皮细胞和成纤维细胞分群进行再分群。

尤其是免疫细胞,分群非常复杂。后续我们慢慢讲。



如果你对单细胞转录组研究感兴趣,但又不知道如何入门,也许你可以关注一下下面的课程



看完记得顺手点个“在看”哦!


生物 | 单细胞 | 转录组丨资料每天都精彩

长按扫码可关注

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存