查看原文
其他

CNS图表复现12—检查原文的细胞亚群的标记基因

生信技能树 单细胞天地 2022-06-06

分享是一种态度

前言

CNS图表复现之旅前面我们已经进行了11讲,你可以点击图表复现话题回顾。如果你感兴趣也想加入交流群,自己去:你要的rmarkdown文献图表复现全套代码来了(单细胞)找到我们的拉群小助手哈。

前面的教程里面,我们首先根据 CNS图表复现08—肿瘤单细胞数据第一次分群通用规则进行了初步分群,如下所示:

immune (CD45+,PTPRC), epithelial/cancer (EpCAM+,EPCAM), and stromal (CD10+,MME,fibo or CD31+,PECAM1,endo) 

然后根据CNS图表复现06-根据CellMarker网站进行人工校验免疫细胞亚群 进行了免疫细胞细分亚群,但是我注意到,其实文章给定了一下他们自己的收集整理好的标记基因作为他们文章的分群依据,如下:

Table Description
1. General Cell Markers , General markers used for differing between non-immune and immune cell types as well as non immuen epithelial cell types
2. COSMIC mutation list , COSMIC Tier 1 genes and overlap with genes used in clincal DNA assays
3. Cancer Cell Signature Genes ,Gene lists of each cancer signature
4. Immune Markers Markers , used for differing between primary immune cell types

现在我们就校验一下原文的细胞亚群的标记基因的可靠性:

首先看 General Cell Markers

首先从 General Cell Markers , General markers used for differing between non-immune and immune cell types as well as non immuen epithelial cell types拿到基因名字:

代码如下:

rm(list=ls())
options(stringsAsFactors = F)
library(Seurat)
library(ggplot2)
load(file = 'first_sce.Rdata')  
load(file = 'phe-of-first-anno.Rdata')
sce=sce.first
table(phe$immune_annotation)
sce@meta.data=phe 
sce@meta.data$new=paste(phe$immune_annotation,phe$seurat_clusters)
genes_to_check=c('PTPRC','CD3G','CD3E','CD79A','BLNK','CD68','CSF1R','MARCO','CD207','PMEL','MLANA','PECAM1','CD34','VWF','EPCAM','SFN','KRT19','ACTA2','MCAM','MYLK','MYL9','FAP','THY1','ALB')

p3 <- DotPlot(sce, features = genes_to_check,
              assay='RNA',group.by = 'new' )  #+ coord_flip()
p3

可以很清楚的看到,高表达ALB基因的Hepatocytes被我划分到了stromal细胞大群,是需要区分出来的。而且高表达PMEL和MLANA的Melanocytes也被我划分到了stromal细胞大群,是需要区分出来的。

而且有一群细胞,既表达EPCAM等上皮细胞的标记基因,也表达MYL9这个Fibroblasts的基因,很有可能是并不纯粹的细胞亚群,或者说是双细胞情况。

然后看 Immune Markers Markers

首先从 Immune Markers Markers , used for differing between primary immune cell types 拿到基因名字。

承接上面的代码,如下:

cells.use <- row.names(sce@meta.data)[which(phe$immune_annotation=='immune')]
length(cells.use)
sce <-subset(sce, cells=cells.use)  
sce
load(file = 'phe-of-subtypes-Immune-by-manual.Rdata')
sce@meta.data=phe
table(phe$immuSub

table(phe$immuSub,phe$seurat_clusters
sce@meta.data$new=paste(phe$immuSub,phe$seurat_clusters)
table(sce@meta.data$new)
genes_to_check=c( 'CD2','CD3D','CD3E','CD3G','MARCO','CSF1R','CD68','GLDN','APOE','CCL3L1',
  'TREM2','C1QB','NUPR1','FOLR2','RNASE1','C1QA','CD1E','CD1C','FCER1A','PKIB',
  'CYP2S1','NDRG2','CMA1','MS4A2','TPSAB1','TPSB2','IGLL5','MZB1','JCHAIN','DERL3',
  'SDC1','MS4A1','BANK1','PAX5','CD79A','PRDM1','XBP1','IRF4','MS4A1','IRF8','ACTB',
  'GAPDH','MALAT1','FCGR3B','ALPL','CXCR1','CXCR2','ADGRG3','CMTM2','PROK2','MME','MMP25',
  'TNFRSF10C','SLC32A1','SHD','LRRC26','PACSIN1','LILRA4','CLEC4C','DNASE1L3',
  'CLEC4C','LRRC26','SCT','LAMP5'
genes_to_check=unique(genes_to_check)
p4 <- DotPlot(sce, features = genes_to_check,
              assay='RNA',group.by = 'new' )  #+ coord_flip()
p4

在所有的细胞亚群,都表达的基因是3个Housekeeping,分别是:'ACTB',   'GAPDH','MALAT1'


往期回顾

IRIS3 :细胞类型特异的调节子分析框架

剑桥大学5天功能基因组培训课程全套资料(含单细胞转录组)

二十年前做科研你只需要检测一些基因在一些癌症细胞系表达量情况即可






如果你对单细胞转录组研究感兴趣,但又不知道如何入门,也许你可以关注一下下面的课程



看完记得顺手点个“在看”哦!


生物 | 单细胞 | 转录组丨资料每天都精彩

长按扫码可关注


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存