新探针继续发布!北京大学李毓龙实验室连发Science 和 2篇 Nature Methods
去年,brainnews为大家盘点过李毓龙实验室近2年的成绩——“探针王子”李毓龙的这两年:成绩斐然! (连续在Nature Biotechnology、Cell、Nature、elife、Neuron等杂志发表研究成果)
2020年9月以来,“探针王子”李毓龙实验室继续发力,连续在Science 和 Nature Methods(2篇)杂志发布最新成果。下面,我们来简单盘点一下:
2020年9月4日,《Science》杂志发表了题为《Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons》的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室徐敏研究组与北京大学生命科学学院、北大-清华生命科学联合中心、北京大学麦戈文脑科学研究所李毓龙研究组合作完成。该项研究利用新型遗传编码的腺苷探针,发现基底前脑区的谷氨酸能神经元对于睡眠压力的积累起着重要的调控作用,进一步揭示了睡眠稳态调控的神经环路机制,为探索睡眠障碍的治疗方法提供了重要参考。
为了实现在睡眠觉醒周期中对基底前脑区胞外腺苷浓度高时空分辨率的检测,李毓龙研究组开发了一种新型的遗传编码的腺苷探针,该探针可以将胞外腺苷浓度的变化转化为探针荧光强度的快速变化。
利用该腺苷探针,徐敏研究组发现基底前脑区的腺苷浓度在清醒状态时较高,在非快速眼动睡眠时较低,这与之前采用微透析法测量腺苷浓度变化的研究结果相一致。然而,小鼠的快速眼动睡眠时长较短,传统的微透析方法无法对快速眼动睡眠时期的腺苷浓度进行精确测量。得益于该探针的高时间分辨率,徐敏研究组首次发现,腺苷在快速眼动睡眠时期也存在很高的浓度,并且高于清醒和非快速眼动睡眠状态。不仅如此,研究者观察到,腺苷浓度在睡眠时相转变时存在快速的变化,提示其与神经元的活动密切相关。
更多介绍,请见:Science:徐敏/李毓龙合作发现谷氨酸能神经元对睡眠稳态调节的重要作用
2020年9月28日,北京大学李毓龙实验室和北京脑科学与类脑研究中心井淼实验室合作在Nature Methods杂志以Article形式在线发表了题为“An optimized acetylcholine sensor for monitoring in vivo cholinergic activity”的研究论文,报道了新一代高灵敏乙酰胆碱荧光探针的开发及其在多种模式生物中的成功应用。
在本工作中,为了进一步提高乙酰胆碱探针的表现,研究者基于已发表的第一代GRAB乙酰胆碱探针进行了突变筛选和理性设计,成功获得了对乙酰胆碱具有约300%荧光信号响应的新版本探针(ACh3.0),其在信号幅度上相比第一代探针有3倍以上的提升,且仍保持着对乙酰胆碱的分子特异性和亚秒级的动力学特性。更重要的是,通过对探针进行设计和优化,ACh3.0探针在结合乙酰胆碱后不会激活内源的信号通路,这使得探针可以安全的作为“检测器”表达于细胞上,而不会对细胞本身的生理功能带来影响。综合而言,新版本的探针在检测乙酰胆碱方面兼具了细胞特异性表达、高灵敏性、高亲和力、快速反应速率以及高选择性,这为其在活体内精确解析乙酰胆碱的动态变化奠定了基础。
更多介绍,请见:
1. 新探针 | 新一代乙酰胆碱探针可实现活体胆碱能信号的灵敏检测
2. Nat Methods:新一代乙酰胆碱探针实现体内乙酰胆碱信号的精确解析
2020年10月22日,北京大学李毓龙实验室、纽约大学Dayu Lin实验室和美国国立卫生研究院Guohong Cui实验室合作在Nature Methods杂志在线发表了题为“Next-generation GRAB sensors for monitoring dopaminergic activity in vivo”的研究论文,报告了新型红色荧光多巴胺探针和第二代绿色荧光多巴胺探针的开发及应用。
研究者在发表的第一代探针的基础上,对多巴胺探针进行了进一步的改造和优化。本工作的亮点之一为开发出新型的具有红色荧光的多巴胺探针(rGRABDA1m和rGRABDA1h),可与其他绿色荧光探针(如钙离子探针,神经递质探针等)共同使用,实现多种信号的同时记录。工作亮点之二为优化出具有更高灵敏度及成像信噪比的第二代绿色荧光多巴胺探针(GRABDA2m和GRABDA2h)(图1),其较第一代探针在反应幅度上提升了2-3倍。
图1. 新型红色荧光多巴胺探针和第二代绿色荧光多巴胺探针在HEK293T细胞中的荧光响应情况
针对新一代多巴胺探针,研究者在细胞、脑片、果蝇(图2)、小鼠(图3)中对其表现进行了系统地刻画,并通过一系列对照实验对探针信号的特异性进行了验证,为该工具的未来应用提供了详尽的信息。应用新一代灵敏的多巴胺探针,研究者在清醒的、自由活动的动物深部脑区中记录了多巴胺的动态变化,并研究了多巴胺随着动物不同精细行为过程发展而产生的变化(图3)。
图2. 通过双光子成像法检测果蝇大脑中由气味刺激和电刺激引发的多巴胺释放
图3. 通过光纤记录法检测小鼠交配行为中NAc脑区的多巴胺动态变化情况
这些新型多巴胺探针不仅为多巴胺功能的研究提供了重要工具,也为将来开发具有多种光谱范围以及更高信噪比的神经递质探针提供了宝贵经验。
更多介绍,请见:
李毓龙实验室合作实现新型红色荧光多巴胺探针和第二代绿色荧光多巴胺探针的开发及应用
更多关于新探针的消息,请关注微信公众号:李毓龙实验室(ID:yulonglilab)
本文中探针的获取方式详见实验室网站:http://www.yulonglilab.org/resources_cn.html
李毓龙:北京大学生命科学学院、北大-清华生命科学联合中心,麦戈文脑研究所研究员
官网的介绍:
研究兴趣:人的大脑有超过几十亿个神经元。这些神经元分为上千个种类,并通过上千亿个突触相互联系。我们发展高效的可遗传编码的荧光分子探针,研究新的成像的方法,并结合两者研究神经元细胞水平上的信号转导,分析神经环路中细胞可兴奋性及突触传递调控的机制。我们还用发展的可视化方法探索在疾病模型中的神经系统环路上的可能的病变及机能障碍。高灵敏的光学成像技术可以提供重要的时空分辨率,多路观测可以同时对多个神经元成像,这些新的方法对于揭开大脑神经调质的特异性的细胞基础提供了有效的方法。我们希望我们新的技术发展能让更多的神经生物学家能用简单有效的方法分析神经局部环路中复杂的突触的活动,解析大脑精巧的结构与功能的关系。
欢迎加入超过 20000人的
全球最大的华人脑科学社群矩阵