查看原文
其他

分数阶模型在锂离子电池荷电状态评估中的比较研究 | CJME论文推荐

田金鹏,熊瑞等 机械工程学报 2022-04-23

提示点击上方"机械工程学报"↑关注我吧


引用本文

Tian, J., Xiong, R., Shen, W. et al. A Comparative Study of Fractional Order Models on State of Charge Estimation for Lithium Ion Batteries. Chin. J. Mech. Eng. 33, 51 (2020).https://doi.org/10.1186/s10033-020-00467-x


研究背景及目的

锂离子电池的荷电状态(State of charge, SOC)估计一直是电池管理的重点,近年来,来自频域电化学阻抗谱的分数阶模型被广泛应用于SOC估计,并取得了相比于传统模型更好的表现。然而,文献中的分数阶模型结构差异大且尚无研究进行横向比较。本文针对这一问题开展了相关动力电池测试,从精度、计算量、鲁棒性等角度开展了电池分数阶模型SOC估计的仿真对比。


试验方法

本研究选取了7只25Ah三元锂离子动力电池进行测试,并搭建了相应的动力电池测试平台。该平台由ARBIN测试仪,温度箱以及上位机组成。其中ARBIN测试仪用于开展电池容量、内阻测试以及工况仿真,温度箱用于调节环境温度,上位机用于控制实验并采集、存储数据。为详细研究分数阶模型在不同温度、不同荷电状态、不同工况等条件下的性能,本研究在15°C,25°C和35°C分别开展了四个测试。首先,根据电池制造商指定的标准充放电方法对电池进行恒流恒压充放电,测试电池的容量。然后,在混合动力脉冲测试中以2%的SOC间隔对电池施加不同幅值的充放电激励,以实现模型参数辨识。其后,研究采取了动态应力测试(dynamic stress test, DST) 以及城市道路循环工况(urban dynamometer driving schedule, UDDS)以仿真实际电动汽车运行过程中的电流变化情况,以验证SOC估计性能。


结果


图1 5种电池分数阶模型


针对DST和UDDS工况的SOC估计结果显示,所有分数阶模型的估计结果在30 s内迅速收敛到±5%的误差边界。对于DST工况,R(RWQ)模型的精度最高,RMSE仅为0.2%,但是对于UDDS工况却无法达到高精度,其RMSE增大到1.75%。R(RQ)W也是如此,对于DST和UDDS工况,其RMSE分别为1.64%和2.21%。相反,其他模型的RMSE较少依赖于工况,表明模型的高可靠性。此外,R(RQ)模型的总体RMSE为0.57%,在SOC估计精度方面优于其他模型。


图2 5种分数阶模型在两个工况上的SOC估计误差比较


当分数阶的记忆长度L变化时,算法中为固定L设置的方差可能不准确,这将影响FOM调整SOC估计结果的能力。而且,具有复杂结构的FOM更加容易受到影响。如图3所示,R(RQ)的RMSE变化在1.34%之内,而R(RQ)(RQ)的最大RMSE变化在5.08%之内。此外,随着存储长度的增加,总的计算时间几乎呈线性增加。因此,在实际应用期间调整存储器长度可以在必要时平衡计算负担和估计精度。例如,当进行其他运算密集型的任务时,可以减少分数阶模型的记忆长度。


图3 记忆长度对SOC估计误差的影响(a)DST和UDDS工况(b)两种工况的总体误差


图4显示了5种分数阶模型在不同电池上的SOC估计误差及其标准差。可以注意到,所有模型均有较好的泛化能力,均方根误差在2.38%以内。R(RQ)具有最高的估计精度和最小的标准差,而最复杂的模型R(RQ)(RQ)和R(RQ)(RQ)W显示出最高的偏差。

图4 分数阶模型在不同电池上应用时的SOC估计误差以及和标准差


结论

本文从SOC估计角度比较了五个锂离子电池的分数阶模型。仿真结果和实验结果的比较表明,增加分数阶模型的复杂性并不能总是提高建模精度。R(RQ)W模型具有比其他四个分数阶模型更高的电压拟合精度。对参数辨识后的分数阶模型,本文在不同工况,记忆长度,温度,电池和传感器漂移下评估SOC估计的准确性,复杂性和鲁棒性。评估结果表明,最简单的分数阶模型,R(RQ)在正常条件下具有最高的准确性。记忆长度影响的评估表明,与具有复杂结构的FOM相比,R(RQ)对截断误差不敏感,然而,它对环境温度变化的鲁棒性最差。在七个电池单体上的验证结果表明,分数阶模型具有良好的泛化能力,R(RQ)显示出最小的误差和标准差。在电流和电压漂移的情况下,所有分数阶模型都可以在较大的漂移范围内提供令人满意的结果。特别地,当电压漂移发生时,R(RQ)具有较大的相对误差,但仍可以提供最高的精度。另一方面,R(RWQ)不能减SOC估计误差的累计,更容易受到电流漂移的影响。


前景与应用

本文系统地比较了5种锂离子电池的分数阶模型在SOC估计方面的表现,为SOC估计算法设计以及电池建模提供了参考。


相关文章/图书推荐

[1] 熊瑞. 动力电池管理系统核心算法. 北京:机械工业出版社,2018.

[2] XIONG Rui, SHEN Weixiang. AdvancedBattery Management Technologies for Electric Vehicles, Wiley, 2019.

[3] XIONG Rui. Battery Management Algorithmfor Electric Vehicles, Springer, 2019.

[4] 熊瑞,何洪文. 电动车辆复合电源系统集成管理基础. 北京:化学工业出版社,2019.


团队带头人介绍

熊瑞,北京理工大学教授、博士生导师,IET Fellow,麻省理工学院客座教授。长期从事电动载运工具动力系统和储能系统的基础理论和工程应用研究,主持国家自然科学基金面上基金(优秀结题)、国家重点研发计划、北京市面上基金和科技新星等课题,第一/通讯作者发表论文100余篇,ESI高被引论文28篇,其中,获“中国百篇最具影响国际学术论文”4篇、机械工程学报封面文章2篇、IEEE TVT最佳论文奖1篇、中国电工技术学会年会优秀论文3篇、电动汽车国际学术会议最佳论文奖3篇。第一作者出版中英文专著4部、授权国家发明专利25件、软件著作权登记5件。担任Applied Energy、IET Intelligent Transport Systems、IET Power Electronics Electrical Engineering、SAE International Journal of Electrified Vehicles,等国际期刊副主编/编委和2017 InternationalSymposium on Electric Vehicles(瑞典、斯德哥尔摩)、International Conference on Electric and IntelligentVehicles (ICEIV 2018-澳大利亚墨尔本和ICEIV 2019-挪威斯塔万格)的国际学术会议大会主席。第一作者出版中英文专著4部、授权国家发明专利20件、软件著作权登记5件。获教育部自然一等奖(排名第2)、汽车工业技术发明一等奖(排名第2)和国防技术发明二等奖(排名第3)。


课题组特色

先进储能科学与应用课题组(Advanced Energy Storageand Application,简称AESA) 创建于2014年,依托于北京理工大学电动车辆国家工程实验室,以电动载运工具动力系统为主要研究方向,课题组负责人为孙逢春院士和熊瑞教授,现有访问学者4人、博士后1人、博士生10人、硕士生22人,国际合作高校包括美国麻省理工学院、德国慕尼黑工业大学、瑞典皇家理工学院和英国剑桥大学等,AESA是一支年轻进取、富有朝气的国际学术团队。主持国家科技部重点研发计划、国家自然科学基金、北京冬奥专项和企业委托课题40多项,发表ESI高被引论文28篇、出版中英文专著4部、授权国家发明专利近30件。近5年来荣获教育部自然一等奖、汽车工业技术发明一等奖和国防技术发明二等奖。测试研究平台包括动力电池/超级电容单体、整组测试设备、恒温箱、电池短路设备等,能够完成单体性能测试、整组性能测试、电动汽车实际工况模拟,为电动汽车能量控制策略、电池管理系统以及动力电池/超级电容化成和测试装置研究提供试验条件。实验室占地面积近200平米。


近两年团队发表文章

课题组近两年发表论文40余篇,部分代表性论文如下:

In recent two years, AESA team has published more than 40 papers,and some selected papers are listed as follows:

R. Xiong, S. Ma, H. Li, F. Sun and J.Li,“Towards a Safer Battery Management System: A Critical Review on Diagnosis andPrognosis of Battery Short Circuit”, iScience, vol. 23, no. 4, pp. 101010,April 2020.

J. Tian, R.Xiong and W.Shen, "State of health estimation based on differential temperature forlithium ion batteries," in IEEE Transactions on Power Electronics, doi:10.1109/TPEL.2020.2978493.

R. Xiong, L. Li, Q. Yu, Q. Jin and R. Yang, “A set membership theory basedparameter and state of charge co-estimation method for all-climate batteries,”Journal of Cleaner Production, vol. 249, pp. 119380, March 2020.

R. Yang,R. Xiong, S. Maand X. Lin, ”Characterization of external short circuit faults in electricvehicle Li-ion battery packs and prediction using artificial neural networks,”Applied Energy, vol. 260, pp. 114253, Feb 2020.

J. Tian, R.Xiong, W. Shen,J. Wang and R. Yang, "Online simultaneous identification of parameters andorder of a fractional order battery model," Journal of Cleaner Production,vol. 247, pp. 119147, Feb 2020.

S. Wu, R.Xiong, H. Li*,V. Nian, and S. Ma, "The state of the art on preheating lithium-ionbatteries in cold weather," Journal of Energy Storage, Vol.27, pp. 101059,Feb. 2020.

J. Tian, R.Xiong, W. Shen,"A review on state of health estimation for lithium ion batteries inphotovoltaic systems,"eTransportation, vol. 2, pp. 100028, Nov 2019.

R. Xiong, R.X. Yang, Z.Y. Chen, W.X.Shen and F.C. Sun, "Online Fault Diagnosis of External Short Circuit forLithium-ion Battery Pack", IEEE Transactions on Industrial Electronics,vol 67, no. 2, pp. 1081-1091, Feb 2020. 

Y. Zhang, R. Xiong, H. He, X. Qu and Michael Pecht, "State ofcharge-dependent aging mechanisms in graphite/Li(NiCoAl)O2 cells: Capacity lossmodeling and remaining useful life prediction", Applied Energy, vol. 255,pp. 113818, DEC 2019.

Q. Yu, R. Xiong, R. Yang and Michael G. Pecht, "Online capacity estimationfor lithium-ion batteries through joint estimation method", AppliedEnergy, vol. 255, pp. 113817, DEC 2019.

X. Chen, H. Lei, R. Xiong, W. Shen and R. Yang, "Anovel approach to reconstruct open circuit voltage for state of chargeestimation of lithium ion batteries in electric vehicles", Applied Energy,vol. 255, pp. 113758, DEC 2019.

S. Guo, R. Xiong, W. Shen and F. Sun,"Aging investigation of anechelon internal heating method on a three-electrode lithium-ion cell at lowtemperatures", Journal of Energy Storage, vol.25, pp. 100878, OCT 2019.

Y. Zhang, R. Xiong, H. He, X. Qu, M. Pecht, “Aging characteristics-basedhealth diagnosis and remaining useful life prognostics for lithium-ionbatteries”, eTransportation, vol. 1,pp. 100004, Aug 2019.

C. Chen, R. Xiong, R. Yang, W. Shen and Fengchun Sun, “State-of-chargeestimation of lithium-ion battery using an improved neural network model and extendedKalman filter,” Journal of Cleaner Production, vol. 234, pp. 1153-1164, OCT2019.

Q. Lin, J. Wang, R. Xiong, W. Shen and H. He,"Towards a smarter battery management system: A critical review on optimalcharging methods of lithium ion batteries," Energy, vol.183, pp. 220-234,Sep 2019.

R. Xiong, K. Wang and S. Guo, “HybridPreheating Method for Lithium-ion Battery Used in Cold Environment,” Journal ofMechanical Engineering, vol. 55, no. 14, pp. 53-59, Jul 2019. DOI:10.3901/JME.2019.14.053.

J. Tian, R. Xiong, W. Shen and J. Wang,"Frequency and time domainmodelling and online state of charge monitoring for ultracapacitors,"Energy, vol 176, pp. 874-887, June 2019.

R. Xiong, Q. Yu, W. Shen, C.Lin and F.Sun, "A Sensor Fault Diagnosis Method for a Lithium-Ion Battery Pack inElectric Vehicles", IEEE Transactions on Power Electronics, 2019, vol. 34,no. 10, pp. 9709-9718, OCT 2019.

R. Xiong, J.Tian, W. Shen and F. Sun,"A novel fractional order model for state of charge estimation in lithiumion batteries", IEEE Transactions on Vehicular Technology, vol. 68, no.5,pp.4130-4139, May 2019.

R. Xiong, Y. Zhang, J. Wang, H. He, S.Peng, Michael Pecht, "Lithium-ion battery health prognosis based on a realbattery management system used in electric vehicles", IEEE Transactions onVehicular Technology, vol. 68, no.5, pp. 4110-4121, May 2019.

Y. Zhang, R. Xiong, H. He, and M. Pecht,"Lithium-ion battery remaininguseful life prediction with Box–Cox transformation and Monte Carlosimulation", IEEE Transactions on Industrial Electronics, vol. 66, no.2,pp. 1585-1597, Feb 2019.

J.P. Tian, R. Xiong and Q.Q. Yu, "Fractional order model basedincremental capacity analysis for degradation state recognition of lithium-ionbatteries", IEEE Transactions on Industrial Electronics, vol. 66, no.2,pp. 1576 - 1584, Feb 2019.

R. Xiong, S. Ma, R. Yang and Z. Chen,“Thermo-mechanical Influence and Analysis of External Short Circuit Faults inLithium-ion Battery”, Journal of Mechanical Engineering, vol. 55, no. 2, pp.115-125, Jan 2019. DOI: 10.3901/JME.2019.02.115.

R. Xiong, L. Li and J. Tian,"Towards a smarter battery management system: A critical review on batterystate of health monitoring methods," Journal of Power Sources, vol.405,pp.18-29, Nov 2018.

R. Xiong*, H. Chen, C .Wang and F. Sun,“Towards a smarter hybrid energy storage system based on battery andultracapacitor - a critical review on topology and energy management”, Journalof Cleaner Production, vol. 202, pp. 1228-1240, Nov 2018.

J. Wang, R. Xiong*, L. Li and Y. Fang, ”A comparative analysis andvalidation for double-filters-based state of charge estimators usingbattery-in-the-loop approach”, Applied Energy, vol.229, pp. 648-659, Nov 2018.

Z Ma, Z Wang, R Xiong*, and J Jiang, “A mechanism identificationmodel based state-of-health diagnosis of lithium-ion batteries for energystorage applications”, Journal of Cleaner Production, vol.193, pp. 379-390, Aug2018.

Y. Zhang, R. Xiong*, H. He, and M. Pecht,"Long short-term memoryrecurrent neural network for remaining useful life prediction of lithium-ionbatteries", IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp.5695 – 5705, July 2018.

R. Yang, R. Xiong, H. He and Z. Chen, "A fractional-order model-basedbattery external short circuit fault diagnosis approach for all-climateelectric vehicles application", Journal of Cleaner Production, vol. 187,pp. 950-959, June 2018.

R. Xiong, LL Li, Z. Li, Q. Yuand H.Mu, "An electrochemical model based degradation state identificationmethod of Lithium-ion battery for all-climate electric vehiclesapplication", Applied Energy, vol. 219, pp. 264-275, June 2018.

S. Guo, R. Xiong, K. Wang and F. Sun, "A novel echelon internalheating strategy of cold batteries for all-climate electric vehiclesapplication", Applied Energy, vol. 219, pp. 256-263, June 2018.

R. Xiong, Y. Z. Duan, J. Y. Cao and Q.Q. Yu*, "Battery and ultracapacitor in-the-loop approach to validate areal-time power management method for an all-climate electric vehicle",Appl Energy, vol. 217, pp.153-165, May 2018.

J. Li, R.Xiong, H. Mu, B. Cornélusse, P. Vanderbemden, D. Ernst and W.Yuan, "Design and Real-time Test of a Hybrid Energy Storage System in theMicrogrid with the benefit of improving the battery lifetime", ApplEnergy, vol. 218, pp. 470-478, May 2018.

Z.Y. Chen, R. Xiong , J.H. Lu and X. G. Li, "Temperature rise predictionof lithium-ion battery suffering external short circuit for all-climateelectric vehicles application", Appl Energy, vol.213, pp. 375-383, Mar2018.

M. Ye, H. Guo, R. Xiong, Q. Q Yu*, "Adouble-scale and adaptive particle filter-based online parameter and state of chargeestimation method for lithium-ion batteries", Energy, vol.144, pp.789-799,Feb 2018.

R. Xiong, J.Y Cao, Q. Q Yu, H. He andF.C. Sun, "Critical Review on the Battery State of Charge EstimationMethods for Electric Vehicles", IEEE ACCESS, vol.6, no.1, pp. 1832-1843,Feb 2018.

R. Xiong, JY. Cao, Q.Q Yu,“Reinforcement learning-based real-time power management for hybrid energystorage system in the plug-in hybrid electric vehicle,” Appl Energy, vol. 211,pp. 538-548, Feb 2018.

R. Xiong, Y. Zhang*, H. He, X. Zhou,Michael Pecht, “A double-scale, particle-filtering, energy state predictionalgorithm for lithium-ion batteries,” IEEE Transactions on IndustrialElectronics, vol.65, no.2, pp.1526-1538, Feb 2018.


更多详细内容请点击文后阅读原文获取。

编辑:金程   校对:张彤




JME学院欢迎您!扫描小助理暖暖的微信二维码,备注学校(单位)+研究方向+姓名,即可加入我们的JME大家庭!

JME学院是由《机械工程学报》编辑部2018年创建,以关注、陪伴青年学者成长为宗旨,努力探索学术传播服务新模式。首任院长是中国机械工程学会监事会监事长、《机械工程学报》中英文两刊主编宋天虎。

我们会围绕学术交流与探讨、青年学者成长等主题开展各种线上线下的活动,专题研讨与出版、直播课堂与分享交流等各种丰富多彩的JME学院活动期待您的参与!



寻觅合作伙伴

有一种合作叫做真诚,有一种发展可以无限,有一种伙伴可以互利共赢,愿我们合作起来流连忘返,发展起来前景可观。关于论文推荐、团队介绍、图书出版、学术直播、招聘信息、会议推广等,请与我们联系。



感谢关注我们!我们《机械工程学报》编辑部将努力为您打造一个有态度、有深度、有温度的学术媒体!



推荐阅读


CJME最新SCI影响因子1.824,70/130

最新 | 机械工程领域SCI期刊一览(2019JCR)

Normal force and sag resistance of pipe conveyor  | CJME论文推荐

数据驱动制造过程中的数据监测与分析 | CJME论文推荐

仿生抗固体颗粒冲蚀材料研究进展:学习自然,超越自然 | CJME论文推荐

纤维牵引打印:一种连续纤维增强金属基复合材料的3D打印方法 | CJME论文推荐


版权声明:


本文为《机械工程学报》编辑部原创内容,欢迎转载,请联系授权!

在公众号后台留言需要转载的文章题目及要转载的公众号ID以获取授权!


联系我们:


联系人:暖暖

电话:010-88379909

E-mail:jme@cmes.org

网 址:http://www.cjmenet.com.cn

官方微信号:jmewechat

长按图片,识别二维码,关注我哟

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存