知识窗▏细数与声学有关的六大交叉学科
声学之所以被认为是“最古老而又最年轻的学科”,其根本原因是声学本身与其他许多学科之间存在着非常广泛的相互渗透关系,以致形成许多相应的边缘学科,其中不仅涉及包括生命科学在内的几乎所有主要的基础自然科学,还在相当程度上涉及若干人文科学。这种广泛性不仅在物理学其他分支中,即使在整个自然科学中也是非常罕见的。
现代声学是一门跨层次的基础性学科,研究从微观到宏观、从次声(长波)到特超声(短波)的一切形式的线性与非线性声(机械)波现象。同时,现代声学具有极强的交叉性与延伸性,它与现代科学技术的大部分学科发生了交叉,形成了一系列诸如声化学、医学超声学、生物声学、海洋声学、环境声学、建筑声学、语言声学等新型独特的交叉学科方向,在现代科学技术中起着举足轻重的作用。现代声学更是一门具有广泛应用性的学科,对当代科学技术的发展、社会经济的进步、国防事业的现代化、以及人民物质与精神生活的改善与提高中发挥着极其重要、甚至不可替代的作用。
下面就来具体说说与声学有关的六大交叉学科,包括次声学、大气声学、电声学、生物声学、语言声学和水声学,围绕它们的研究范畴、发展历史与应用等展开。
一、次声学
⒈次声学的研究范畴
次声是频率低于可听声频率范围的声,它的频率范围大致为10-4Hz~20Hz。是研究次声波在媒质中的产生、传播和接收及其效应和应用的科学。
⒉次声学的发展历史
早在19世纪,人们就已记录到了自然界中一些偶发事件(如大火山爆发或流星爆炸)所产生的次声波。其中最著名的是1883年8月27日,印度尼西亚的喀拉喀托火山突然爆发,它产生的次声波传播了十几万公里,当时用简单微气压计都可以记录到它。在理论方面,最早在1890年,英国物理学家瑞利就开始了大气振荡现象的研究。
第一次世界大战前后,火炮和高能炸药的出现,提供了较大的声源,促进了对次声在大气中传播现象的了解。在20世纪20年代还进行了高层大气的温度和风对次声传播影响的研究,并建立了探测高层大气的简单声学方法,为此还研制了灵敏度更高的微气压计、热线式次声传声器。30年代发展了电容次声传声器。40年代后,利用声波在大气中的传播速度与温度的均方根成正比关系的原理,提出了火箭-榴弹次声法测定高层大气温度和风速的方法,发展了次声接收和定位的新技术。
核武器的发展对次声学的建立起了很大的推动作用,使得次声接收、抗干扰方法、定位技术、信号处理和次声传播等方面部有了很大发展。
核爆炸会形成强大的次声源,它产生的次声波在大气中可以传播得非常远,次声方法曾成为探测大气中核爆炸的主要方法之一。为此建立了许多次声观察站,进行了长时期连续记录和观察。人们还发现了大气中存在许多自然次声源,对它们的发声机制和特性进行了初步的了解。
现在知道的自然次声源有:火山爆发、流星、极光、电离层扰动、地震、晴空湍流、海啸、台风、雷暴、龙卷风、雷电等。
认识并利用次声方法来预测它们的活动规律,已成为近代次声学研究的重要课题。长周期的次声波在电离层中传播,使电离层受到扰动,这种以声重力波方式传播的次声波成为高空大气研究中非常活跃的课题之一。
⒊次声波在大气中的传播特性
次声在大气中的传播具有衰减小并受波导和重力影响等特点。
⑴次声在大气中的传播衰减小:声在大气中传播的衰减主要是由分子吸收、热传导、和粘滞效应引起的,相应的吸收系数与频率的二次方成正比。由于次声的频率很低,所以大气对次声波的吸收系数很小。此外,湍流的作用也会引起次声波的衰减,但是它们的影响都很小,通常可略去不计。
⑵大气温度、密度和风速影响次声在大气中的传播:大气温度、密度和风速随高度具有不均匀分布的特性,使得次声在大气中传播时出现“影区”、聚焦和波导等现象。
①大气温度:当高度增加时,气温逐渐降低,在20公里左右出现一个极小值;之后,又开始随高度的增加,气温上升,在50公里左右气温再次降低,在80公里左右形成第二个极小值;然后复又升高。
大气次声波导现象与这种温度分布有密切关系。声波主要沿着温度极小值所形成的通道(称为声道)传播,通常将20公里高度极小值附近的大气层称为大气下声道,高度80公里附近的大气层称为大气上声道。次声波在大气中传播时,可以同时受到两个声道作用的影响。
在距离声源100~200公里处,次声信号很弱,通常将这样的区域称为影区。在某种大气温度分布条件下,经过声道传输次声波聚集在某一区域,这一区域称它为聚焦区。
②风速:风也会对次声在大气中的传播产生很大的影响,次声的传播在顺风和逆风时差别很大:顺风时,声线较集中于低层大气;逆风时,产生较大的影区。不同频率的次声在大气声道中传播速度不相同,产生频散现象,这使得在不同地点测得次声波的波形各不相同。
③大气密度:大气的密度随高度增加而递减,如果次声波的波长很大,例如有几十公里长,这时,在一个波长的范围内,大气密度已经产生显著的变化了。当大气媒质在声波的作用下受到压缩时,它的重心较周围媒质提高,这时除了弹性恢复力作用外,它还受重力的作用。反之,当它在声波作用下膨胀时,也有附加重力作用使它恢复到平衡状态。所以长周期的次声波,除了弹性力作用外,还附加有重力的作用,这种情况下,次声波通常称为声重力波。声重力波在大气中传播时,在理论上可以看作是一些简正波的叠加,基本上可分为声分支和重力分支。它们在大气中传播都具有频散现象,由于重力分支主要能量在地面附近传播,而地面附近温度较高,因此传播速度较大。
⒋次声学的应用
早在第二次世界大战前,次声方法已应用于探测火炮的位置,可是直到20世纪50年代,它在其他方面的应用问题才开始被人们注意,它的应用前景是很广阔的,大致可分为下列几个方面:①通过研究自然现象产生的次声波的特性和产生机制,更深入地认识这些现象的特性和规律;②利用接收到的被测声源所辐射的次声波,探测它的位置、大小和其它特性;③预测自然灾害性事件。④对大范围某些大规模大气现象的性质和规律的连续探测、监视和预测;⑤通过测定次声波与大气中其它波动的相互作用的结果,探测这些活动特性;⑥利用测定次声波的特性来了解人体或其他生物相应器官的活动情况。
二、大气声学
⒈大气声学的研究范畴
大气声学是研究大气声波的产生机制和各种声源的声波在大气中传播规律的分支,作为以声学方法探测大气的一种手段,也可看成是大气物理的一个分支。
⒉大气声学的主要研究内容
大气中存在着的各种各样的声音,可以笼统的分成自然的和人为的两大类。
⑴自然声:主要来源于一系列气象现象和其他地球物理现象,如飓风(台风)、海浪、地震、极光、磁暴等。它们不仅产生可听声而且更产生次声;风的呼啸是由于大气涡旋通过各种障碍物时被破坏而产生的。其他一些常见的自然声则大多来自空气流中某些物体的振动,如电线的嗡嗡声、树叶的沙沙声等。
⑵人为声:人为的声音中主要是工业和交通工具的噪声,特别是超音速喷气机飞行时产生的冲击波传播问题,日益引起人们的注意。如果大气条件有利于这种波的聚焦,那么地面上的建筑物和人的健康就会受到危害。
⒊大气声学的应用与影响
⑴声源定位:随着声定位技术的发展,现在已可由若干个接收站测得的数据定出自然声源或人为声源的位置,这在预报台风、地震以及侦察核爆炸、炮位中都有具体应用。随着数字式数据处理技术的迅速改进,这类应用将日臻完善和广泛传播。
⑵频谱分析:大气中自然源发出的声波具有极宽的频谱,此外,在周期几分钟至几十分钟内,还存在一类空气压缩力和重力共同参与作用的声重力波,不过大部分自然声源主要产生大气次声波。由于发声过程的复杂性、测量技术和识别声源方面的困难,仅对雷声作过较多的频谱测量,其他发声过程的频谱尚只能估计。
⑶雷电声:雷是伴随闪电出现的大气发声现象。雷形成的机制,主要是强烈的闪电放电时,电流通过闪电通道而产生高温高压等离子体,造成一个向通道四周传播的激震波,这个高压激震波在很短距离内迅速衰减并退化为强的可闻声和次声。
由于闪电放电的复杂性,不同闪电的雷声在时间变化和强度等方面也有很大差异,大体可分为炸雷(持续时间1秒左右的强烈雷声脉冲)、闷雷(重复数次的隆隆声脉冲)和拉磨雷(持续较长时间的低沉声响)三种。
⑷大气不均匀性的影响:从声学观点来看,大气是一种运动着的不均匀媒质,大气声学的重大课题都与声在大气中传播时所发生的现象相关联。大气的密度和温度随高度而降低,而温度在某些高度重新增长。在这种规则的不均匀性上,叠加着温度和风随气象条件的变化以及不同尺度的随机湍流脉动。所有这些不均匀性都对声传播产生强烈影响:无湍流大气的分层不均匀性使声音产生折射;湍流不均匀性引起声音的散射和减弱。
⑸频散和选频:不同频率的声波在大气中具有不同的传播速度,因而在大气中传播的(非单频)次声波会产生频散。同时大气特定的温度层结构和风结构对各种频率和向各个方向传播的次声波具有选择作用,即只允许某些频率的次声波作远距离传播,其余频率的传播则受到强烈抑制,这就是大气选频作用。次声波的频散和大气选频作用,在探测人工和自然声源以及解释声信号特征方面,都是十分重要的。
三、电声学
⒈电声学的研究范畴
电声学是研究声电相互转换的原理和技术,以及声信号的存储、加工、传递、测量和利用的科学。它所涉及的频率范围很广泛,从极低频的次声一直延伸到几十亿赫的特超声。不过通常所指的电声,都属于可听声范围。
⒉电声学的发展历史
电声技术的历史最早可以追溯到19世纪,由爱迪生发明留声机和贝尔发明用于电话机的碳粒传声器开始,1881年曾有人以两个碳粒传声器连接几对耳机,作了双通路的立体声传递表演。大约在1919年第一次用电子管放大器和电磁式扬声器做了扩声实验。
在第一次世界大战以后,科学家们把机电方面的研究成果应用于电声领域中,于是电声学就有了理论基础。随着电声换能器理论的发展,较为完善的各类电声设备和电声测量仪器相继问世,特别是20世纪70年代来,电子计算机和激光技术在电声领域中的应用,大大促进了电声学的发展。
⒊电声换能器
电声换能器是把声能转换成电能或电能转换成声能的器件,对它的研究是电声学的一个重要内容分支。通常所指的电声换能器,都属于可听声范围。
⑴电声换能器的组成:各种电声换能器,尽管其类型、功用或工作状态不同,它们都包含两个基本组成部分,即电系统和机械振动系统。在换能器内部,电系统和机械振动系统之间通过某种物理效应相互联系,以完成能量的转换。在其外部,换能器的电系统与信号发生器的输出回路,或前级放大器的输入回路相匹配。换能器的机械振动系统,以其振动表面与声场相匹配。设计电声换能器要同时考虑到力-电-声三个体系,这三种体系是互相牵制的,处理得不好往往会顾此失彼。
⑵电声转换器的分类:广义的电声换能器应用的频率范围很宽,包括次声、可听声、超声换能器。属于可听声频率范围内的电声换能器分类如下:
⑶电声技术:电声技术是电声领域中发展得比较快的一个分支,在政治、军事、文化各个领域内有着广泛的应用。例如,应用于有线或无线通信系统;有线或无线广播系统以及会场、剧院的扩声;录音棚、高保真录放系统等。此外还应用于发展中的声控、语控技术;以及语言识别等新技术。总体来说,它主要包括录放声技术、扩声技术以及与它们有关的电声仪器和电声测试技术等。
①录放声技术:录放声技术是指把自然声音经过一系列技术设备(如传声器、录音机、拾声器等)进行接收、放大、传送、存储、记录和复制加工,然后再重放出来供人聆听的技术。它研究的主要问题是如何保持自然声的优良的音质,即在各个环节以及整个系统,都具有逼真地保持声音信号原来面貌的能力,包括对声音信号进行必要的美化和加工。
②声频放声装置:可分成以下四个部分。
△电信号提取设备——输入端录声机、电唱机、接收机,是从盒式磁带、唱片及广播电波中把节目作为电信号提取出来的设备。
△调音设备——前级控制台(包括前置放大器、衰减器、混合网路等)主要作调音用。
△功率放大器——将控制台的输出信号增强到能够驱动扬声器系统工作的放大器。
△声辐射器——扬声器或耳机,将电信号转换成声信号。
收听室相当于扬声器系统的使用环境,对重放音乐的音质起很大的作用。
③扩声系统:声源和它周围的环境;把声信号转变为电信号的传声器;放大电信号并对信号加工的设备;传输线;把电信号转变为声信号的扬声器和听众区的声学环境。
扩声不同于放声之处是传声器和扬声器处在同一声场内。
扩声系统是具有反馈的系统。在通路增益足够大时系统就会失去稳定性,并过渡到自振状态,产生啸叫。所以在扩声技术中除了对声信号进行加工美化外,为了提高扩声系统的最大功率增益,改进扩声质量和系统的稳定性,必须采取措施来抑制声反馈所引起的声音畸变。
⒋电声学与其它学科的交叉
电声学还是一门与人的主观因素密切相关的物理科学,原因是从声源到接收都摆脱不了人的因素。声音是多维空间问题(它包括音调、音色、持续时间、强度、声源方位以及噪声干扰等),其中每一维变化都对听感有影响。复杂的主观感受并不是任何仪表所能完全反映出来的,这必须联系到生理声学和心理声学、语言声学甚至音乐声学和建筑声学等各个方面的问题,因而形成了电声学的特色和它的复杂性。
社会的发展和生产的需要,对电声学提出了大量的实际和理论问题。因此电声学总的发展趋势是:电声器件和电声设备朝着高保真、立体声、高抗噪能力、高效率、高通话容量的方向发展;进行音质评价的研究,改善录放技术以及声音加工技术;新的换能机理的研究以及新材料的开发;提高检测声信号的能力仍是声测技术的主攻方向。
总之,只要发声过程和听感(知觉)过程以及与二者互相联系的物理和生理上的规律不断为人们所掌握,电声学便会不断有新的发展,所以电声学是蕴藏着巨大生命力的学科。
四、生物声学
⒈生物声学的研究范畴
生物声学是研究能发声和有听觉动物的发声机制、声信号特征、声接收、加工和识别,动物声通信与动物声纳系统,以及各种动物的声行为的生物物理学分支学科。
生物声学是介于生物学和声学之间的一门边缘学科,它是生物学、声学、语言学、医学、化学等多学科相互渗透的产物。广义的生物声学还涉及生物组织的声学特征、声对生物组织的效应、生物媒质的超声性质、超声的生物效应及超声剂量学等方面内容,并在此基础上形成了一个新的科学分支——超声生物物理学。
⒉生物声学的主要研究内容
动物之间的联系和交往是维系它们种群和群落结构,以及进行正常生活的必要手段。光、电、磁以及化学气味都可以作动物交往的媒介,然而声信息在动物交往中却占有特别重要的地位。它最大优点是传递距离远,且易于负载丰富多彩的感情。生物声学主要围绕动物声交往这个内容进行着一系列有关课题的研究。
主要研究包括:同一种群内动物声的识别和交往功能;不同种群的动物声的区别和隔离功能;动物声在种群和群落的形成和进化过程中的作用等。
⒊生物声学的应用
动物的声发射和声接收器官及其工作机制,即动物声交往的生理基础和它们与动物形态学的关系。许多动物的发声器官是声带,但有的却不是用声带产生动物声,如蚱蜢用后腿摩擦发声、蝉用腹下薄膜发声、鱼可用鳔发声、海豚主要靠鼻道发声等。
动物接受声波的听觉器官也各不相同。如蚱蜢微小的听觉器官生在腹部;纺织娘靠前脚上一个肉眼看不到的微型薄膜感受声波;蟑螂是用尾须接收声波;雄蚊头上两根触角上的刚毛则对雌蚊翅膀的扇动声特别敏感;许多飞蛾都有一种内藏式的“声呐系统”可以收听超声波;大多数鱼的听觉器官便是体侧的侧线,在这些侧线中含有听觉神经末梢以受纳声波;蛇的听觉极弱,主要通过腹部感受周围环境的动静等等。
⑴仿生研究:长期以来,人们出于在空间和水下探测中应用仿生学的强烈兴趣,对蝙蝠和海豚的超声定位系统给予了特殊的注意为了分析研究它们的发声信号,建立和发展了必要的理论模型和数学方法。
蝙蝠用喉头发射超声,并用耳朵接收其反射回波,从而构成超声探测系统。发射的超声频率可高达10万赫(菊头蝙科)。实验表明,挖去双眼的蝙蝠借助其超声定位系统可探查到0.1毫米的金属丝障碍物,可在半秒内捕捉到三个飞行中的昆虫。海豚也有极强的超声定位本领,而且还发现海豚在相互交往时使用七种不同的发声并以长短不同的间歇相组合。科学家预言,一旦这些声信息破译后,就可通过电子技术实现人与海豚之间的对话。
⑵医学超声:20世纪中期以来,人们使用兆赫级超声波对哺乳动物的组织和器官的超声性质(速度、衰减、吸收、声阻抗、散射等)做了大量研究,为现代医学超声工程奠定了基础。70年代以来,以B型超声成像为代表的医学超声诊断技术取得了很快的发展,它通过实时显示人体内脏的瞬态特性,直接向人们提供有关脏器的生理或病理信息。超声诊断由于安全、简单、经济、信息量丰富而受到医学界的特别赏识。
⑶微观生物声学:作为生物物理学和分子生物学的组成部分,微观生物声学正在发展中。对各种氨基酸、寡肽、多肽、蛋白质及脱氧核糖核酸等生物大分子水溶液的超声弛豫吸收机制做了较深入的研究。在生物大分子构像变化、质子转移动力学及生物大分子与水分子间的相互作用等方面,也都取得了有价值的研究成果。
⑷声波的生物效应:声波作用于生物体对其产生某种影响称为声波的生物效应。大量试验表明,用一定频率和剂量的声波处理蔬菜、谷物、中草药及树木的种子常常可获得明显的增产效果。
生物声学与人类生活和生产活动息息相关。播放模拟蝙蝠叫声,驱逐夜蛾,可提高玉米产量;控制海洋生物声场可以判断鱼群的位置、种类及数量,利用电子发声器引诱鱼群定向聚集,可以提高捕鱼量;飞机场安装驱鸟器会大大改善飞机的飞行安全;粮仓内安装驱鼠器可使粮食免受鼠害等等。
人们往往成功地利用地震前动物的异常表现来预报地震的爆发,而这些动物的异常反应很可能是由地下岩石剧烈活动时发出的次声引起的;仿照水母耳做成的台风警报器可提前15小时准确地预报台风的方位和强度;仿照蝙蝠的声系统制成的声呐“眼镜”可以帮助盲人辨认出面前的电线杆、台阶以及草地中的羊肠小道。
对哺乳动物组织超声传播和相互作用的深入研究,必然会找到描述组织生理特性的、更多的声学特征参量(如声速、声衰减、非线性参量等),建立和发展新的诊断设备,开拓定量超声诊断的途径。并可使超声医疗在更严格的科学基础上得到进一步发展。
五、语言声学
⒈语言声学的研究范畴
语言声学也称为语言通信,是近代声学中的一个分支学科,是用声学方法研究语言的产生、传递、接受和转换的一门科学。
⒉语言声学的研究方法
语言是既具有自然属性又具有社会属性的复杂的信号系统。声学方法不但直接用于研究语言信号的声学特性本身,而且用于研究语言的心理特性和生理特性。语言分析、合成和感知是语言声学研究的主要方法:①在研究语言时,声学特性是主要的;②在研究音节时,便要考虑到音节结构;③而在研究词句时,则又需要考虑语法和语意;④因此,在语言声学研究中,还涉及到语言学和信息论。
⒉语言声学发展简史
早在一二千年以前,人们便对语言进行了研究。由于没有适当的仪器设备,长期以来,一直是由耳倾听和用口模仿来进行研究。因此,这种语言研究常被称为“口耳之学”,所以对语声只是停留在定性的描写上。
19世纪60年代,亥姆霍兹应用声学方法对元音和歌唱进行了研究,从而奠定了语言声学的基础。1876年电话的发明,以及电话通信的飞速发展,促进了语言信号的声学特性及其与语言感知的关系的研究。电子技术的发展,为语声的定量研究,提供了有力的手段。20世纪40年代,一种语言声学的专用仪器──语图仪问世了。它可以把语声的声学特征用语图表示出来,从而得出了“可见语言”。这对语言声学的发展作出了重要贡献。50年代对语言产生的声学理论开始有了系统的论述,到了60年代语言声学研究得到了计算技术的帮助,使得过去受人力、时间限制的大量的话声统计分析工作,得以在电子计算机上进行。在此基础上,语言声学不论在基础研究方面,还是在技术应用方面,都取得了突破性的进展。
反过来,电子技术和计算技术的发展,又对语言声学提出了新的课题。当前,计算机的语言输入和语言输出、自动应答装置、自动语言识别、嗓音鉴别、语言理解系统等,都迫切需要对语言信号的许多基本问题作出新的解答。
⒊语言声学的主要研究内容
⑴语言的产生:根据声学观点,语言的产生可分成三个部分:①声源激励、声道调制和声波辐射,其中决定语声性质的是声源激励和声道调制;②语言产生的研究内容包括:激励声源的特性、发声器官的工作状态和声道的声学性质等;③研究方法:大多是用电-力-声类比的方法,以建立声带波产生的模型、声道模型和语言产生的参量模型。
实验表明,由声道形状决定的共振峰,是主要的信息要素。目前,从语声中准确地分离出声源特性和声道调制特性来,还存在许多困难。为研究语言的产生,除对语声的物理特性进行研究之外,还对发声生理进行研究,如利用肌电图配合声学测量,来研究发声器官的肌肉活动。
⑵语言分析:语言分析是用分析的方法来研究语言的自然特性。主要内容是:分析语声的时间特性和频率特性,以及发声器官的发声分析;语声的时间特性和频率特性包括:波形、长度、强度随时间的变化、短时间相关函数和功率谱、短时频谱分析、长时平均功率谱、共振峰分析和基频分析等。
在说话时,语声是处在语流之中的。从一个短暂的时间窗口去观察语声的声学特性,便是短时频谱分析,而长时平均频谱则表示语言的统计平均特性。共振峰分析,是根据语音的频谱和语言产生的原理,推算出声道的共振频率。
⑶基频分析:从语言波中提取出声带振动的基本频率。研究方法既可以测量基频本身,也可以利用谐波来求出基频。
基频随时间的变化方式,构成了声调和语调,它们是重要的语声特征。在专用的语言分析设备问世以前,曾采用浪纹计和示波器分析语言波形,以后又使用滤波器组或频率分析仪。但是,对于大量的多变的语声来说,这些分析方法都有很大的局限性。因此,对语言特性的认识也受到一定的限制。
40年代出现的语图仪,可以把可听的语言描绘成可见图样──语图。这便是所谓“可见语言”。语图可以表现语声的三维特性,横轴代表时间,纵轴代表频率,而黑度代表强弱。语言频谱显示设备可以在一个电视屏幕上把说的话用语图的形式显示出来。此外,还发展了许多用于语言分析的专用软件,以便于利用计算机进行语言分析。
⑷语言合成:用人工模拟语言产生的过程,以合成出语言来,供直接应用或进行研究。最初是用机械的方法来模拟人讲话,在18世纪便做出了可以产生连续语言的机器。一直到20世纪30年代还在研制结构更为复杂的机械发声装置。它们所发出的语声的音质都很不好。1939年出现了所谓语言合成仪,它是用电子线路来模拟发声器官的动作,其工作方式很像电子琴。一个受过训练的人,可以用它“演奏”出可以听懂的语言。
另一种语言合成方法称为语图还音。把语图用墨线画在透明胶带上,再用一个音轮调制线光源来照射走动的胶带。根据胶带透射过去的光通量的变化放出语声来。由于在绘制语图时改动方便,所以语图还音装置曾在语言合成中起过重要作用。
20世纪50年代开始采用传输线来模拟声道。既可以整体模拟,也可以分段模拟。由一个适当的电源激励,经过放大器和扬声器,便可发出语声来。改变传输线的参量,便可以发出不同的语声。现在,利用电子计算机,根据语言产生的原理,把它写成一些发声规则和参量,再将其组合成语言。
⑸自动语言识别:自动语言识别是根据语言信号的声学待征,有时加上语言的结构规则和语意线索,由机器认出输入的语言来。可以根据使用要求,由机器以不同的方式作出响应,如打印出与该语声相应的文字、符号,完成规定的动作等。自动语言识别分为孤立单词自动识别和连续语言自动识别,自20世纪50年代开始系统而广泛的研究。
自动语言识别的实现,面对着三个重大的语言声学基础课题:首先,语言知觉的基本单位是什么,是音素、音节还是单词;其次,是否存在音素的心理常量,如果有,它是什么;最后,如何对连续语言进行分段。
研究现状:对单个人小量词汇的自动识别已取得了较大的进展,有限词汇的、在一定条件下适用的自动语言识别装置,已进入实际应用。在更换发话人和扩大词汇容量方面现在还有困难。适用于多数发话人的、不怕环境噪声干扰的和无限词汇的自动语言识别系统还有待于大量的基础研究。
⑹嗓音鉴别:嗓音鉴别也称为发话人鉴别,包括两个方面:发话人鉴定和发话人辨别。发话人鉴定是根据发话人已有贮的嗓音(口声)材料,与发话人现时提供的材料相比较,鉴定是不是发话人本人在说话。这可用于银行业务中,存款人用嗓音代替印鉴,以便于通过电话来办理存取手续。发话人辨别是从大量的已有的嗓音样本中,辨别出哪一个与发话人的嗓音最相似或者与它们都不相似。
与自动语言识别不同,嗓音鉴别在于利用语声当中代表发话人个性特征的部分,而自动语言识别则是利用不同发话人或同一发话人在不同时刻发同一语声时的共性特征。
鉴别方法:嗓音鉴别多采用听音-看图法,即由有训练的专业人员审听嗓音材料、检视语图特征──声纹,以作出判断。嗓音鉴别已在法律程序中作为一种证据使用。
⑺声码器:根据工作原理,声码器分为通道声码器、半声码器(语声激励声码器)、相关声码器、谐和声码器、共振峰声码器、线性预测声码器和同态声码器等多种,发展较多的是通道声码器和线性预测声码器。用声码器来压缩语言信号的数码率,是实现人-机对话的重要手段。
声码器是达德利在1939年发明的,由于语音质量较差、体积庞大、造价高昂,以致很长时间未能获得广泛应用。近年来,应用大规模集成电路做成的声码器,已可随身携带,其音质与普通电话相仿。因而不仅可用于政府首脑通信和军事通信,而且已开始进入商用通信。
六、水声学
⒈水声学的研究范畴
声学的一个分支学科,主要研究声波在水下的产生、传播和接收过程,用以解决与水下目标探测和信息传输过程有关的声学问题。
声波是已知的唯一能够在水中远距离传播的波动,在这方面远比电磁波(如无线电波、光波等)好,水声学随着海洋的开发和利用发展起来,并得到了广泛的应用。
⒉水声学发展简史
⑴水声学的诞生:1827年左右,瑞士和法国的科学家首次相当精确地测量了水中声速。1912年“泰坦尼克”号客轮同冰山相撞而沉没,促使一些科学家研究对冰山回声定位,这标志了水声学的诞生。
⑵近代水声学:美国的费森登设计制造了电动式水声换能器,1914年就能探测到两海里远的冰山。1918年,朗之万制成压电式换能器,产生了超声波,并应用了当时刚出现的真空管放大技术,进行水中远程目标的探测,第一次收到了潜艇的回波,开创了近代水声学,也由此发明了声呐。
随后,水声换能器的革新,关于温度梯度影响声传播路径的机理、声吸收系数随频率变化等水声学研究的成就,使声呐得以不断改进,并在第二次世界大战期间反德国潜艇的大西洋战役中起了重要作用。
⑶现代水声学:第二次世界大战以后,为提高探测远距离目标(如潜艇)的能力,水声学研究的重点转向低频、大功率、深海和信号处理等方面。同时,水声学应用的领域也越加广泛,出现了许多新装置,例如:水声制导鱼雷,音响水雷,主、被动扫描声呐,水声通信仪,声浮标,声航速仪,回声探测仪,鱼群探测仪,声导航信标,地貌仪,深、浅诲底地层剖面仪,水声释放器以及水声遥测、控制器等。
水声作为遥测海洋的积分探头,在长时间内大面积连续监测海洋的运动过程以及海洋资源概念也已初步形成。随着海洋的开发,水声学在海洋资源的调查开发、对海洋动力学过程和环境监测、增进人类对海洋环境的认识等方面的应用还将不断地扩展。
⒊水声学的主要研究内容
现代水声学的研究课题涉及面很广,主要有:新型水声换能器,水中非线性声学,水声场的时空结构,水声信号处理技术,海洋中的噪声和混响、散射和起伏,目标反射和舰船辐射噪声,海洋媒质的声学特性等。特别是水声学正在与海洋、地质、水生物等学科互相渗透,而形成海洋声学等研究领域。
⑴水声换能器:水声换能器是发射和接收水中声信号的装置,应用最广泛的是电声转换的水声换能器,即转换电能为水中声能的水声发射器,以及转换水中声能为电能的水声接收器(即水听器)。水是声阻抗率较高的媒质,因此要发射较大声功率就必须有较大的力。常用水声换能器按其基本换能机理分为可逆换能器和不可逆换能器。
20世纪60年代以来,为了实现声呐的远程探测,发展了不少新的换能材料、结构振动方式和换能机理;发展了工作在低频、宽带、大功率和深水中的发射器,具有高灵敏度、宽带、低噪声等性能的水听器;出现了新型的水声换能器,如复合压电陶瓷水听器、凹型弯张换能器、利用亥姆霍兹共鸣器原理制成的低频水听器、应用射流开关技术的调制流体式换能器、声光换能器等。
⑵水声参量阵:分为参量发射阵和参量接收阵两类。它利用声波在水内传播时产生的非线性相互作用。如发射器同时发出两个频率相近的高频波(又称原波),由于非线性相互作用,则还产生差频波及和频波,这也可看作为一种新的转换概念,参量发射阵利用的就是差频波。参量发射阵可分为原波饱和与无饱和两种情况(饱和是当声波的振幅足够大时产生的,这时,近场原波的振幅不再随声源振幅的增大而增大)。
①四种典型模式:无饱和近场吸收限制、无饱和远场球面扩展限制、饱和近场限制、饱和远场限制。对这四种典型模式的理论研究结果与实验符合得很好。对无饱和的两种模式,差频波的声压都正比于两原波声压的乘积。
②独特优点:可以利用小尺寸换能器获得低频、宽频带、低旁瓣或无旁瓣、探照灯式的尖锐波束,应用于需要低频高分辨率探测中。参量阵已进入实用阶段,特别适用于海底浅层地质的勘探、水下埋藏物的探测、浅海特定简正波的激励等。
③主要缺点:效率很低。
参量接收阵近来也受到注意,其工作原理与参量发射阵相同,非线性相互作用在高声强的泵波和待接收的声波之间发生,在泵波的声轴上接收差频或和频信号。不过,参量接收阵的技术实现难度更大,实际应用为时尚早。
⑶海洋中的水声传播特性:海洋及其边界(海面和海底)组成复杂多变的水声传播媒质,它的复杂多变性主要表现在随海区和季节而变化,从而有不同的传播规律。从声源发出的声信号在传播过程中逐渐损失能量,这种传播损失分为扩展和衰减。
扩展损失表示声波的波阵面从声源向外不断扩展的简单几何效应。但实际上声波经常是在类似于波导中的传播,可以在这种波导(称为声道)中定向性地传播很长距离。衰减损失包括吸收、散射和声能漏出声道的效应。
造成吸收的原因是海水的粘滞性、热传导性、海水中硫酸镁和硼酸-硼酸盐离子的弛豫机构。吸收使声强以指数形式随距离下降,吸收系数一般正比于频率二次方,因此远程声呐都选用较低频率。
造成散射的原因包括海中气泡、悬浮粒子、不均匀水团、浮游生物以及边界的不平整性,散射一般远小于吸收所引起的衰减。声能漏出声道的效应则因具体声道而异。
产生海洋传播声道的条件是海洋边界及特定声速剖面。声速剖面就是海洋的声速分层结构。海水中的声速是温度、盐度和静压力(深度)的函数。它大致分为三层:①表面层中的声速对温度和风的作用很敏感,有明显的季节变化和日变化;②主跃变层在表面层以下约千米深度内,温度随深度而下降,使声速也随深度下降,具有较强的负声速梯度;③最下面的称为深海等温层,层中海水处于冷而均匀的稳定状态,声速随着深度的增加而增加。
在主跃变层的负声速梯度和深海等温层的正声速梯度之间存在一个定速极小值(声道轴),形成较稳定的深海声道──声发声道。
在沿岸浅海及大陆架上,声速剖面受较多的因素影响,有较强的地区变异性和短时间不稳定性。但平均而言,仍有比较明显的季节特征。冬季的典型声速剖面是等温层,夏季往往是负跃层或负梯度。
在浅海,由海面和海底构成浅海声道,声波在声道中由海面和海底不断反射而传播。海底的声反射特性,特别是小掠射角的海底反射损失,是浅海声场分析和声呐作用距离预报的重要参量,它决定于海底的底质和结构。
当声传播水平距离不特别远(几百千米以内)时,往往把海洋看作分层媒质,分层媒质中的波动理论在60年代已达到较为成熟的阶段。
⑷混响:海洋中存在着大量散射体以及起伏不平的界面。当声源发射声波以后,碰到这些散射体,就会引起声能在各个方向上重新分配,即产生散射波。其中返回到接收点的散射波的总和称为混响。混响是主动式声呐的主要干扰,由产生混响的散射体不同性质,可分为体积混响、海面混响和海底混响。
对混响的研究大体上分为能量规律和统计规律两个方面。混响的能量规律的理论分析以声波在海洋中的传播理论和散射理论的结合为出发点,主要涉及混响强度同信号参量和环境因素的联系以及衰减规律。
⑸自动检测技术:随着声纳信号处理技术的发展,接收机输出数据率不断提高,靠声纳员来辨认出目标并测定其参量是很困难的,这就发展了机器辅助检测和自动检测的技术。虽然水声信号处理的理论与雷达很相似,但由于水声信道的复杂性,仍有许多不同之处。
■文章来自“声振之家”,编发时作了节选与调整,用于学习与交流
相关阅读推荐
公众号
溪流之海洋人生
微信号▏xiliu92899
用专业精神创造价值
用人文关怀引发共鸣
您的关注就是我们前行的动力
投稿邮箱▏452218808@qq.com