查看原文
其他

苏教版六年级数学下册6.3《正反比例的区别​》微课视频+练习

点蓝字关注我→ 绿色学习站 2021-08-08

(视频最大化,横屏观看,视觉效果更佳哦!

课后作业

1.填空题

成语“立竿见影”用数学的眼光来看。这是应用了比例知识当中的(    )关系。

比较物体的高度和影长时,要在同一(    )、同一(    )进行。

在同一时间、同一地点,物体的高度和影长成(    )比例。

2.在一幅地图上,用3厘米长的线段表示实际距离240千米。如果量得甲乙两地相距1.3厘米,那么甲乙两地的实际距离是多少千米?



1.正比例  

时间  地点

2.240÷3×1.3=104千米


教学设计

1. 通过测量、计算、比较,发现在同一时间,同一地点,同时测量不同的竹竿的高度与影长的比值是相等的。

2. 应用发现的规律,测量出大树的高度。

3. 通过探索、发现、经历实验、比较发现规律的过程,体验解决问题的乐趣,感受数学方法的价值。

重点:应用发现的规律,测量出大树的高度。

难点:发现在同一时间,同一地点,同时测量不同的竹竿的高度与影长的比值是相等的。

不同高度的竹竿、尺子。

师:同学们,要想知道一棵大树的高度,可以怎样做呢?

学生可能会说:

·先了解附近建筑物的高度,再通过比较,估计大树有多高。

·在阳光下,不同高度的物体,影长是不一样的。物体高度和影长之间有什么关系呢?

师:要解决这些问题,看来我们应该通过实验,看看其中究竟有没有规律?有什么规律呢?

【设计意图:提出问题,引发学生的认知冲突,激发学生探究的兴趣】

1. 实验操作。

师:请同学们,以小组为单位实验进行活动。先请同学们认真阅读活动要求,注意安全。(课件出示:活动要求,具体内容如下)

(1)在阳光下,把几根同样长的竹竿直立在平坦的地面上,同时量出每根竹竿的影长。(结果取整厘米数)

(2)把几根不同长度的竹竿直立在地面上,同时量出每根竹竿的影长。

(3)小组内合理分工,做好测量数据的记录,并计算比值。

(4)比较每次求得的比值,你有什么发现。

学生到操场上进行活动;教师巡视了解情况。

组织学生交流汇报,小结:在阳光下,在同一时间、同一地点测量几根同样长的竹竿,其影长相等;在阳光下,同一地点、同一时间测量不同的竹竿,竹竿长度和影长的比值是相等的(或者说竹竿影长和竹竿长度的比值是相等的)。

2. 解决问题。

师:你能应用实验活动中发现的规律,通过测量和计算求出大树的高度吗?怎么做呢?

生:当然能了。我们在阳光下,同时量出一根直立竹竿和一棵大树的影长,再量出竹竿的长度,就能根据“在阳光下,同一地点、同一时间测量不同的竹竿,竹竿长度和影长的比值是相等的(或者说竹竿影长和竹竿长度的比值是相等的)”,进行计算,得出大树的高度。

师:请大家还是以小组为单位,分工合作,解决问题吧!

学生进行小组活动,解决问题;教师巡视了解情况。

组织学生交流汇报,重点说说想法。

3. 延伸思考。

师:同一棵大树,在不同时间测量它的影长,结果相同吗?通过上面的活动,你还能想到什么?

学生可能会说:

·同样高度的物体在不同时间、不同地点测出的影长是会变化的。

·比较物体的高度和影长时,要在同一时间、同一地点进行。

·在同一时间、同一地点,物体的高度和影长成正比例。

【设计意图:通过实践测量和探索,找出规律,解决问题,让学生感受到数学知识的应用价值和趣味性】

师:本节课你们运用了哪些知识来解决“大树有多高”的问题?说说你在解决问题时的体会。你还有什么困难需要帮助?

【设计意图:通过回顾与经验介绍,提升学生的学习能力、交流能力与解决实际问题的能力】


点击阅读原文关注我每天获取最新资料

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存