PyTorch语义分割开源库semseg
The following article is from 我爱计算机视觉 Author CV君
加入极市专业CV交流群,与6000+来自腾讯,华为,百度,北大,清华,中科院等名企名校视觉开发者互动交流!更有机会与李开复老师等大牛群内互动!
同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流。点击文末“阅读原文”立刻申请入群~
本文授权转自公众号我爱计算机视觉
今天跟大家介绍一款新出的基于PyTorch的语义分割开源库semseg:
https://github.com/hszhao/semseg
其开发者为香港中文大学的博士生Hengshuang Zhao。
https://hszhao.github.io/
介绍
semseg用PyTorch实现的语义分割/场景解析开源库。 它可以方便帮助开发者用于各种语义分割数据集的训练和测试。
该库主要使用ResNet50 / 101/152作为主干网,也可以很容易地改成其他分类网络结构。
目前已经实现了包括PSPNet和PSANet在内的网络,其在2016年ImageNet场景解析挑战赛@ ECCV16,LSUN语义分割挑战赛2017 @ CVPR17和WAD可驾驶区域分割挑战赛2018 @ CVPR18中排名第一。 示例实验数据集包括主流的ADE20K,PASCAL VOC 2012和Cityscapes。
ps. 该库开发者即PSPNet和PSANet算法的一作。
亮点
1. 同时支持多线程训练与多进程训练,并且后者非常快(该库比较重视训练)。
2. 重新实现的算法取得更好的结果,而且代码结构清晰(说明代码质量高)。
3. 所有初始化模型、训练得到的模型和预测的结果都能够下载(https://drive.google.com/open?id=15wx9vOM0euyizq-M1uINgN0_wjVRf9J3),方便开发者直接使用或者研究比较。
作者推荐的软硬件环境:
(要4到8块显卡,看来没有多卡,语义分割是玩不起了~)
训练简单
该库的训练非常简单,简单配置后只需要一条命令
br
测试简单
简单配置数据集和模型路径后,也只需要一条命令:
br
在单幅图像上测试也很简单,示例:
br
Performance
在三个数据集上的结果如下:
注意,作者列出的时间是在8个GeForce RTX 2080 Ti上训练得到的。
感谢作者的分享~
再发一遍地址:
https://github.com/hszhao/semseg
*延伸阅读
南邮提出实时语义分割的轻量级网络:LEDNET,可达 71 FPS!70.6% class mIoU!即将开源
“史上最全PyTorch资源汇总”:教程、实战、必读论文、中文教材一应俱全
如何给你PyTorch里的Dataloader打鸡血
点击左下角“阅读原文”,即可申请加入极市目标跟踪、目标检测、工业检测、人脸方向、视觉竞赛等技术交流群,更有每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流,一起来让思想之光照的更远吧~
觉得有用麻烦给个在看啦~