多源多尺度SAR船舶切片数据集正式发布
该数据集场景包括港口、近岸、岛屿和远海,类型包括油轮、散货船、大型集装箱船和渔船等各类常见船舶目标,图1是该数据集中的部分切片展示。
图1 数据集样例
致谢:中国科学院空天信息创新研究院数字地球实验室张波、吴樊、许璐、王原原、李璐、谷丰、董颖博、李六彤、徐昌贵、邹丽川、李天阳等对本数据集制作作出了贡献。
本数据集引用格式:
参考文献:
[1] Wang Y, Wang C, Zhang H. Combining a single shot multibox detector with transfer learning for ship detection using sentinel-1 SAR images[J]. Remote Sening Letters, 2018, 9(8): 780-788. doi: 10.1080/2150704X.2018.1475770
[2] Wang Y, Wang C, Zhang H. Ship classification in high-resolution SAR images using deep learning of small datasets[J]. Sensors, 2018, 18(9): 2929. doi: 10.3390/s18092929
[3] Wang Y, Wang C, Zhang H, et al. Automatic ship detection based on RetinaNet using multi-resolution Gaofen-3 imagery[J]. Remote Sensing, 2019, 11(5): 531. doi: 10.3390/rs11050531
[4] Li L, Wang C, Zhang H, et al. SAR image ship object generation and classification with improved residual conditional generative adversarial network[J]. IEEE Geoscience and Remote Sensing Letters, 2020. doi: 10.1109/LGRS.2020.3016692
[5] Dong Y, Zhang H, Wang C, et al. Fine-grained ship classification based on deep residual learning for high-resolution SAR images[J]. Remote Sensing Letters, 2019, 10(11): 1095-1104. doi: 10.1080/2150704X.2019.1650982
[6] Zou L, Zhang H, Wang C, et al. Mw-acgan: Generating multiscale high-resolution SAR images for ship detection[J]. Sensors, 2020, 20(22): 6673. doi: 10.3390/s20226673
相关阅读