《利用Python进行数据分析·第2版》第8章(上) 数据规整:聚合、合并和重塑
作者:SeanCheney Python爱好者社区专栏作者
简书专栏:https://www.jianshu.com/u/130f76596b02
前文传送门:
【翻译】《利用Python进行数据分析·第2版》第1章 准备工作
【翻译】《利用Python进行数据分析·第2版》第2章(上)Python语法基础,IPython和Jupyter
【翻译】《利用Python进行数据分析·第2版》第2章(中)Python语法基础,IPython和Jupyter
【翻译】《利用Python进行数据分析·第2版》第2章(下)Python语法基础,IPython和Jupyter
【翻译】《利用Python进行数据分析·第2版》第3章(上)Python的数据结构、函数和文件
【翻译】《利用Python进行数据分析·第2版》第3章(中)Python的数据结构、函数和文件
【翻译】《利用Python进行数据分析·第2版》第3章(下)Python的数据结构、函数和文件
【翻译】《利用Python进行数据分析·第2版》第4章(上)NumPy基础:数组和矢量计算
【翻译】《利用Python进行数据分析·第2版》第4章(中)NumPy基础:数组和矢量计算
【翻译】《利用Python进行数据分析·第2版》第4章(下)NumPy基础:数组和矢量计算
【翻译】《利用Python进行数据分析·第2版》第5章(上)pandas入门
【翻译】《利用Python进行数据分析·第2版》第5章(中)pandas入门
【翻译】《利用Python进行数据分析·第2版》第5章(下)pandas入门
【翻译】《利用Python进行数据分析·第2版》第6章(上) 数据加载、存储与文件格式
【翻译】《利用Python进行数据分析·第2版》第6章(中) 数据加载、存储与文件格式
【翻译】《利用Python进行数据分析·第2版》第6章(下) 数据加载、存储与文件格式
【翻译】《利用Python进行数据分析·第2版》第7章(上)数据清洗和准备
【翻译】《利用Python进行数据分析·第2版》第7章(中) 数据清洗和准备
【翻译】《利用Python进行数据分析·第2版》第7章(下) 数据清洗和准备
在许多应用中,数据可能分散在许多文件或数据库中,存储的形式也不利于分析。本章关注可以聚合、合并、重塑数据的方法。
首先,我会介绍pandas的层次化索引,它广泛用于以上操作。然后,我深入介绍了一些特殊的数据操作。在第14章,你可以看到这些工具的多种应用。
8.1 层次化索引
层次化索引(hierarchical indexing)是pandas的一项重要功能,它使你能在一个轴上拥有多个(两个以上)索引级别。抽象点说,它使你能以低维度形式处理高维度数据。我们先来看一个简单的例子:创建一个Series,并用一个由列表或数组组成的列表作为索引:
In [9]: data = pd.Series(np.random.randn(9), ...: index=[['a', 'a', 'a', 'b', 'b', 'c', 'c', 'd', 'd'], ...: [1, 2, 3, 1, 3, 1, 2, 2, 3]]) In [10]: data Out[10]: a 1 -0.204708 2 0.478943 3 -0.519439 b 1 -0.555730 3 1.965781 c 1 1.393406 2 0.092908 d 2 0.281746 3 0.769023 dtype: float64
看到的结果是经过美化的带有MultiIndex索引的Series的格式。索引之间的“间隔”表示“直接使用上面的标签”:
In [11]: data.index Out[11]: MultiIndex(levels=[['a', 'b', 'c', 'd'], [1, 2, 3]], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 2, 0, 1, 1, 2]])
对于一个层次化索引的对象,可以使用所谓的部分索引,使用它选取数据子集的操作更简单:
In [12]: data['b'] Out[12]: 1 -0.555730 3 1.965781 dtype: float64 In [13]: data['b':'c'] Out[13]: b 1 -0.555730 3 1.965781 c 1 1.393406 2 0.092908 dtype: float64 In [14]: data.loc[['b', 'd']] Out[14]: b 1 -0.555730 3 1.965781 d 2 0.281746 3 0.769023 dtype: float64
有时甚至还可以在“内层”中进行选取:
In [15]: data.loc[:, 2] Out[15]: a 0.478943 c 0.092908 d 0.281746 dtype: float64
层次化索引在数据重塑和基于分组的操作(如透视表生成)中扮演着重要的角色。
例如,可以通过unstack方法将这段数据重新安排到一个DataFrame中:
In [16]: data.unstack() Out[16]: 1 2 3 a -0.204708 0.478943 -0.519439 b -0.555730 NaN 1.965781 c 1.393406 0.092908 NaN d NaN 0.281746 0.769023
unstack的逆运算是stack:
In [17]: data.unstack().stack() Out[17]: a 1 -0.204708 2 0.478943 3 -0.519439 b 1 -0.555730 3 1.965781 c 1 1.393406 2 0.092908 d 2 0.281746 3 0.769023 dtype: float64
stack和unstack将在本章后面详细讲解。
对于一个DataFrame,每条轴都可以有分层索引:
In [18]: frame = pd.DataFrame(np.arange(12).reshape((4, 3)), ....: index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]], ....: columns=[['Ohio', 'Ohio', 'Colorado'], ....: ['Green', 'Red', 'Green']]) In [19]: frame Out[19]: Ohio Colorado Green Red Green a 1 0 1 2 2 3 4 5 b 1 6 7 8 2 9 10 11
各层都可以有名字(可以是字符串,也可以是别的Python对象)。如果指定了名称,它们就会显示在控制台输出中:
In [20]: frame.index.names = ['key1', 'key2'] In [21]: frame.columns.names = ['state', 'color'] In [22]: frame Out[22]: state Ohio Colorado color Green Red Green key1 key2 a 1 0 1 2 2 3 4 5 b 1 6 7 8 2 9 10 11
注意:小心区分索引名state、color与行标签。
有了部分列索引,因此可以轻松选取列分组:
In [23]: frame['Ohio'] Out[23]: color Green Red key1 key2 a 1 0 1 2 3 4 b 1 6 7 2 9 10
可以单独创建MultiIndex然后复用。上面那个DataFrame中的(带有分级名称)列可以这样创建:
MultiIndex.from_arrays([['Ohio', 'Ohio', 'Colorado'], ['Green', 'Red', 'Green']], names=['state', 'color'])
重排与分级排序
有时,你需要重新调整某条轴上各级别的顺序,或根据指定级别上的值对数据进行排序。swaplevel接受两个级别编号或名称,并返回一个互换了级别的新对象(但数据不会发生变化):
In [24]: frame.swaplevel('key1', 'key2') Out[24]: state Ohio Colorado color Green Red Green key2 key1 1 a 0 1 2 2 a 3 4 5 1 b 6 7 8 2 b 9 10 11
而sort_index则根据单个级别中的值对数据进行排序。交换级别时,常常也会用到sort_index,这样最终结果就是按照指定顺序进行字母排序了:
In [25]: frame.sort_index(level=1) Out[25]: state Ohio Colorado color Green Red Green key1 key2 a 1 0 1 2 b 1 6 7 8 a 2 3 4 5 b 2 9 10 11 In [26]: frame.swaplevel(0, 1).sort_index(level=0) Out[26]: state Ohio Colorado color Green Red Green key2 key1 1 a 0 1 2 b 6 7 8 2 a 3 4 5 b 9 10 11
根据级别汇总统计
许多对DataFrame和Series的描述和汇总统计都有一个level选项,它用于指定在某条轴上求和的级别。再以上面那个DataFrame为例,我们可以根据行或列上的级别来进行求和:
In [27]: frame.sum(level='key2') Out[27]: state Ohio Colorado color Green Red Green key2 1 6 8 10 2 12 14 16 In [28]: frame.sum(level='color', axis=1) Out[28]: color Green Red key1 key2 a 1 2 1 2 8 4 b 1 14 7 2 20 10
这其实是利用了pandas的groupby功能,本书稍后将对其进行详细讲解。
使用DataFrame的列进行索引
人们经常想要将DataFrame的一个或多个列当做行索引来用,或者可能希望将行索引变成DataFrame的列。以下面这个DataFrame为例:
In [29]: frame = pd.DataFrame({'a': range(7), 'b': range(7, 0, -1), ....: 'c': ['one', 'one', 'one', 'two', 'two', ....: 'two', 'two'], ....: 'd': [0, 1, 2, 0, 1, 2, 3]}) In [30]: frame Out[30]: a b c d 0 0 7 one 0 1 1 6 one 1 2 2 5 one 2 3 3 4 two 0 4 4 3 two 1 5 5 2 two 2 6 6 1 two 3
DataFrame的set_index函数会将其一个或多个列转换为行索引,并创建一个新的DataFrame:
In [31]: frame2 = frame.set_index(['c', 'd']) In [32]: frame2 Out[32]: a b c d one 0 0 7 1 1 6 2 2 5 two 0 3 4 1 4 3 2 5 2 3 6 1
默认情况下,那些列会从DataFrame中移除,但也可以将其保留下来:
In [33]: frame.set_index(['c', 'd'], drop=False) Out[33]: a b c d c d one 0 0 7 one 0 1 1 6 one 1 2 2 5 one 2 two 0 3 4 two 0 1 4 3 two 1 2 5 2 two 2 3 6 1 two 3
reset_index的功能跟set_index刚好相反,层次化索引的级别会被转移到列里面:
In [34]: frame2.reset_index() Out[34]: c d a b 0 one 0 0 7 1 one 1 1 6 2 one 2 2 5 3 two 0 3 4 4 two 1 4 3 5 two 2 5 2 6 two 3 6 1
8.2 合并数据集
pandas对象中的数据可以通过一些方式进行合并:
pandas.merge可根据一个或多个键将不同DataFrame中的行连接起来。SQL或其他关系型数据库的用户对此应该会比较熟悉,因为它实现的就是数据库的join操作。
pandas.concat可以沿着一条轴将多个对象堆叠到一起。
实例方法combine_first可以将重复数据编接在一起,用一个对象中的值填充另一个对象中的缺失值。
我将分别对它们进行讲解,并给出一些例子。本书剩余部分的示例中将经常用到它们。
数据库风格的DataFrame合并
数据集的合并(merge)或连接(join)运算是通过一个或多个键将行链接起来的。这些运算是关系型数据库(基于SQL)的核心。pandas的merge函数是对数据应用这些算法的主要切入点。
以一个简单的例子开始:
In [35]: df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'], ....: 'data1': range(7)}) In [36]: df2 = pd.DataFrame({'key': ['a', 'b', 'd'], ....: 'data2': range(3)}) In [37]: df1 Out[37]: data1 key 0 0 b 1 1 b 2 2 a 3 3 c 4 4 a 5 5 a 6 6 b In [38]: df2 Out[38]: data2 key 0 0 a 1 1 b 2 2 d
这是一种多对一的合并。df1中的数据有多个被标记为a和b的行,而df2中key列的每个值则仅对应一行。对这些对象调用merge即可得到:
In [39]: pd.merge(df1, df2) Out[39]: data1 key data2 0 0 b 1 1 1 b 1 2 6 b 1 3 2 a 0 4 4 a 0 5 5 a 0
注意,我并没有指明要用哪个列进行连接。如果没有指定,merge就会将重叠列的列名当做键。不过,最好明确指定一下:
In [40]: pd.merge(df1, df2, on='key') Out[40]: data1 key data2 0 0 b 1 1 1 b 1 2 6 b 1 3 2 a 0 4 4 a 0 5 5 a 0
如果两个对象的列名不同,也可以分别进行指定:
In [41]: df3 = pd.DataFrame({'lkey': ['b', 'b', 'a', 'c', 'a', 'a', 'b'], ....: 'data1': range(7)}) In [42]: df4 = pd.DataFrame({'rkey': ['a', 'b', 'd'], ....: 'data2': range(3)}) In [43]: pd.merge(df3, df4, left_on='lkey', right_on='rkey') Out[43]: data1 lkey data2 rkey 0 0 b 1 b 1 1 b 1 b 2 6 b 1 b 3 2 a 0 a 4 4 a 0 a 5 5 a 0 a
可能你已经注意到了,结果里面c和d以及与之相关的数据消失了。默认情况下,merge做的是“内连接”;结果中的键是交集。其他方式还有"left"、"right"以及"outer"。外连接求取的是键的并集,组合了左连接和右连接的效果:
In [44]: pd.merge(df1, df2, how='outer') Out[44]: data1 key data2 0 0.0 b 1.0 1 1.0 b 1.0 2 6.0 b 1.0 3 2.0 a 0.0 4 4.0 a 0.0 5 5.0 a 0.0 6 3.0 c NaN 7 NaN d 2.0
表8-1对这些选项进行了总结。
表8-1 不同的连接类型
多对多的合并有些不直观。看下面的例子:
In [45]: df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'], ....: 'data1': range(6)}) In [46]: df2 = pd.DataFrame({'key': ['a', 'b', 'a', 'b', 'd'], ....: 'data2': range(5)}) In [47]: df1 Out[47]: data1 key 0 0 b 1 1 b 2 2 a 3 3 c 4 4 a 5 5 b In [48]: df2 Out[48]: data2 key 0 0 a 1 1 b 2 2 a 3 3 b 4 4 d In [49]: pd.merge(df1, df2, on='key', how='left') Out[49]: data1 key data2 0 0 b 1.0 1 0 b 3.0 2 1 b 1.0 3 1 b 3.0 4 2 a 0.0 5 2 a 2.0 6 3 c NaN 7 4 a 0.0 8 4 a 2.0 9 5 b 1.0 10 5 b 3.0
多对多连接产生的是行的笛卡尔积。由于左边的DataFrame有3个"b"行,右边的有2个,所以最终结果中就有6个"b"行。连接方式只影响出现在结果中的不同的键的值:
In [50]: pd.merge(df1, df2, how='inner') Out[50]: data1 key data2 0 0 b 1 1 0 b 3 2 1 b 1 3 1 b 3 4 5 b 1 5 5 b 3 6 2 a 0 7 2 a 2 8 4 a 0 9 4 a 2
要根据多个键进行合并,传入一个由列名组成的列表即可:
In [51]: left = pd.DataFrame({'key1': ['foo', 'foo', 'bar'], ....: 'key2': ['one', 'two', 'one'], ....: 'lval': [1, 2, 3]}) In [52]: right = pd.DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'], ....: 'key2': ['one', 'one', 'one', 'two'], ....: 'rval': [4, 5, 6, 7]}) In [53]: pd.merge(left, right, on=['key1', 'key2'], how='outer') Out[53]: key1 key2 lval rval 0 foo one 1.0 4.0 1 foo one 1.0 5.0 2 foo two 2.0 NaN 3 bar one 3.0 6.0 4 bar two NaN 7.0
结果中会出现哪些键组合取决于所选的合并方式,你可以这样来理解:多个键形成一系列元组,并将其当做单个连接键(当然,实际上并不是这么回事)。
注意:在进行列-列连接时,DataFrame对象中的索引会被丢弃。
对于合并运算需要考虑的最后一个问题是对重复列名的处理。虽然你可以手工处理列名重叠的问题(查看前面介绍的重命名轴标签),但merge有一个更实用的suffixes选项,用于指定附加到左右两个DataFrame对象的重叠列名上的字符串:
In [54]: pd.merge(left, right, on='key1') Out[54]: key1 key2_x lval key2_y rval 0 foo one 1 one 4 1 foo one 1 one 5 2 foo two 2 one 4 3 foo two 2 one 5 4 bar one 3 one 6 5 bar one 3 two 7 In [55]: pd.merge(left, right, on='key1', suffixes=('_left', '_right')) Out[55]: key1 key2_left lval key2_right rval 0 foo one 1 one 4 1 foo one 1 one 5 2 foo two 2 one 4 3 foo two 2 one 5 4 bar one 3 one 6 5 bar one 3 two 7
merge的参数请参见表8-2。使用DataFrame的行索引合并是下一节的主题。
表8-2 merge函数的参数
indicator 添加特殊的列_merge,它可以指明每个行的来源,它的值有left_only、right_only或both,根据每行的合并数据的来源。
赞赏作者
Python爱好者社区历史文章大合集:
Python爱好者社区历史文章列表(每周append更新一次)
关注后在公众号内回复“课程”即可获取:
小编的Python入门视频课程!!!
崔老师爬虫实战案例免费学习视频。
丘老师数据科学入门指导免费学习视频。
陈老师数据分析报告制作免费学习视频。
玩转大数据分析!Spark2.X+Python 精华实战课程免费学习视频。
丘老师Python网络爬虫实战免费学习视频。