【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络AlexNet
点击上图,立即开启AI急速修炼
作者:Charlotte 高级算法工程师 ,博客专家;
擅长用通俗易懂的方式讲解深度学习和机器学习算法,熟悉Tensorflow,PaddlePaddle等深度学习框架,负责过多个机器学习落地项目,如垃圾评论自动过滤,用户分级精准营销,分布式深度学习平台搭建等,都取了的不错的效果。
博客专栏:https://www.cnblogs.com/charlotte77/
前文传送门:
【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理
【深度学习系列】卷积神经网络详解(二)——自己手写一个卷积神经网络
【深度学习系列】用PaddlePaddle和Tensorflow进行图像分类
上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集。在上周的实验表现中,经过200次迭代后的LeNet-5的准确率为60%左右,这个结果差强人意,毕竟是二十年前写的网络结构,结果简单,层数也很少,这一节中我们讲讲在2012年的Image比赛中大放异彩的AlexNet,并用AlexNet对cifar-10数据进行分类,对比上周的LeNet-5的效果。
什么是AlexNet?
AlexNet在ILSVRC-2012的比赛中获得top5错误率15.3%的突破(第二名为26.2%),其原理来源于2012年Alex的论文《ImageNet Classification with Deep Convolutional Neural Networks》,这篇论文是深度学习火爆发展的一个里程碑和分水岭,加上硬件技术的发展,深度学习还会继续火下去。
AlexNet网络结构
由于受限于当时的硬件设备,AlexNet在GPU粒度都做了设计,当时的GTX 580只有3G显存,为了能让模型在大量数据上跑起来,作者使用了两个GPU并行,并对网络结构做了切分,如下:
网络结构
Input输入层
输入为224×224×3的三通道RGB图像,为方便后续计算,实际操作中通过padding做预处理,把图像变成227×227×3。
C1卷积层
该层由:卷积操作 + Max Pooling + LRN(后面详细介绍它)组成。
卷积层:由96个feature map组成,每个feature map由11×11卷积核在stride=4下生成,输出feature map为55×55×48×2,其中55=(227-11)/4+1,48为分在每个GPU上的feature map数,2为GPU个数;
激活函数:采用ReLU;
Max Pooling:采用stride=2且核大小为3×3(文中实验表明采用2×2的非重叠模式的Max Pooling相对更容易过拟合,在top 1和top 5下的错误率分别高0.4%和0.3%),输出feature map为27×27×48×2,其中27=(55-3)/2+1,48为分在每个GPU上的feature map数,2为GPU个数;
LRN:邻居数设置为5做归一化。
最终输出数据为归一化后的:27×27×48×2。
C2卷积层
该层由:卷积操作 + Max Pooling + LRN组成
卷积层:由256个feature map组成,每个feature map由5×5卷积核在stride=1下生成,为使输入和卷积输出大小一致,需要做参数为2的padding,输出feature map为27×27×128×2,其中27=(27-5+2×2)/1+1,128为分在每个GPU上的feature map数,2为GPU个数;
激活函数:采用ReLU;
Max Pooling:采用stride=2且核大小为3×3,输出feature map为13×13×128×2,其中13=(27-3)/2+1,128为分在每个GPU上的feature map数,2为GPU个数;
LRN:邻居数设置为5做归一化。
最终输出数据为归一化后的:13×13×128×2。
C3卷积层
该层由:卷积操作 + LRN组成(注意,没有Pooling层)
输入为13×13×256,因为这一层两个GPU会做通信(途中虚线交叉部分)
卷积层:之后由384个feature map组成,每个feature map由3×3卷积核在stride=1下生成,为使输入和卷积输出大小一致,需要做参数为1的padding,输出feature map为13×13×192×2,其中13=(13-3+2×1)/1+1,192为分在每个GPU上的feature map数,2为GPU个数;
激活函数:采用ReLU;
最终输出数据为归一化后的:13×13×192×2。
C4卷积层
该层由:卷积操作 + LRN组成(注意,没有Pooling层)
卷积层:由384个feature map组成,每个feature map由3×3卷积核在stride=1下生成,为使输入和卷积输出大小一致,需要做参数为1的padding,输出feature map为13×13×192×2,其中13=(13-3+2×1)/1+1,192为分在每个GPU上的feature map数,2为GPU个数;
激活函数:采用ReLU;
最终输出数据为归一化后的:13×13×192×2。
C5卷积层
该层由:卷积操作 + Max Pooling组成
卷积层:由256个feature map组成,每个feature map由3×3卷积核在stride=1下生成,为使输入和卷积输出大小一致,需要做参数为1的padding,输出feature map为13×13×128×2,其中13=(13-3+2×1)/1+1,128为分在每个GPU上的feature map数,2为GPU个数;
激活函数:采用ReLU;
Max Pooling:采用stride=2且核大小为3×3,输出feature map为6×6×128×2,其中6=(13-3)/2+1,128为分在每个GPU上的feature map数,2为GPU个数.
最终输出数据为归一化后的:6×6×128×2。
F6全连接层
该层为全连接层 + Dropout
使用4096个节点;
激活函数:采用ReLU;
采用参数为0.5的Dropout操作
最终输出数据为4096个神经元节点。
F7全连接层
该层为全连接层 + Dropout
使用4096个节点;
激活函数:采用ReLU;
采用参数为0.5的Dropout操作
最终输出为4096个神经元节点。
输出层
该层为全连接层 + Softmax
使用1000个输出的Softmax
最终输出为1000个分类。
AlexNet的优势
1.使用了ReLu激活函数
----原始Relu-----
AlexNet引入了ReLU激活函数,这个函数是神经科学家Dayan、Abott在《Theoretical Neuroscience》一书中提出的更精确的激活模型。原始的Relu激活函数(可参见 Hinton论文:《Rectified Linear Units Improve Restricted Boltzmann Machines》)我们比较熟悉,即
,这个激活函数把负激活全部清零(模拟上面提到的稀疏性),这种做法在实践中即保留了神经网络的非线性能力,又加快了训练速度。
但是这个函数也有缺点:
在原点不可微
反向传播的梯度计算中会带来麻烦,所以Charles Dugas等人又提出Softplus来模拟上述ReLu函数(可视作其平滑版):
实际上它的导数就是一个
过稀疏性
当学习率设置不合理时,即使是一个很大的梯度,在经过ReLu单元并更新参数后该神经元可能永不被激活。
----Leaky ReLu----
为了解决上述过稀疏性导致的大量神经元不被激活的问题,Leaky ReLu被提了出来:
其中
还有很多其他的对于ReLu函数的改进,如Parametric ReLu,Randomized ReLu等,此处就不再展开讲了。
2.Local Response Normalization 局部响应均值
LRN利用相邻feature map做特征显著化,文中实验表明可以降低错误率,公式如下:
公式的直观解释如下:
由于
取文中参数的图像如下(横坐标为
当
当
3.Dropout
Dropout是文章亮点之一,属于提高模型泛化性的方法,操作比较简单,以一定概率随机让某些神经元输出设置为0,既不参与前向传播也不参与反向传播,也可以从正则化角度去看待它。(关于深度学习的正则化年初的时候在公司做过一个分享,下次直接把pdf放出来)
从模型集成的角度来看:
无Dropout网络:
有Dropout网络:
其中
它是极端情况下的Bagging,由于在每步训练中,神经元会以某种概率随机被置为无效,相当于是参数共享的新网络结构,每个模型为了使损失降低会尽可能学最“本质”的特征,“本质”可以理解为由更加独立的、和其他神经元相关性弱的、泛化能力强的神经元提取出来的特征;而如果采用类似SGD的方式训练,每步迭代都会选取不同的数据集,这样整个网络相当于是用不同数据集学习的多个模型的集成组合。
用PaddlePaddle实现AlexNet
1.网络结构(alexnet.py)
这次我写了两个alextnet,一个加上了局部均值归一化LRN,一个没有加LRN,对比效果如何
#coding:utf-8
'''
Created by huxiaoman 2017.12.5
alexnet.py:alexnet网络结构
'''
import paddle.v2 as paddle
import os
with_gpu = os.getenv('WITH_GPU', '0') != '1'
def alexnet_lrn(img):
conv1 = paddle.layer.img_conv(
input=img,
filter_size=11,
num_channels=3,
num_filters=96,
stride=4,
padding=1)
cmrnorm1 = paddle.layer.img_cmrnorm(
input=conv1, size=5, scale=0.0001, power=0.75)
pool1 = paddle.layer.img_pool(input=cmrnorm1, pool_size=3, stride=2)
conv2 = paddle.layer.img_conv(
input=pool1,
filter_size=5,
num_filters=256,
stride=1,
padding=2,
groups=1)
cmrnorm2 = paddle.layer.img_cmrnorm(
input=conv2, size=5, scale=0.0001, power=0.75)
pool2 = paddle.layer.img_pool(input=cmrnorm2, pool_size=3, stride=2)
pool3 = paddle.networks.img_conv_group(
input=pool2,
pool_size=3,
pool_stride=2,
conv_num_filter=[384, 384, 256],
conv_filter_size=3,
pool_type=paddle.pooling.Max())
fc1 = paddle.layer.fc(
input=pool3,
size=4096,
act=paddle.activation.Relu(),
layer_attr=paddle.attr.Extra(drop_rate=0.5))
fc2 = paddle.layer.fc(
input=fc1,
size=4096,
act=paddle.activation.Relu(),
layer_attr=paddle.attr.Extra(drop_rate=0.5))
return fc2
def alexnet(img):
conv1 = paddle.layer.img_conv(
input=img,
filter_size=11,
num_channels=3,
num_filters=96,
stride=4,
padding=1)
cmrnorm1 = paddle.layer.img_cmrnorm(
input=conv1, size=5, scale=0.0001, power=0.75)
pool1 = paddle.layer.img_pool(input=cmrnorm1, pool_size=3, stride=2)
conv2 = paddle.layer.img_conv(
input=pool1,
filter_size=5,
num_filters=256,
stride=1,
padding=2,
groups=1)
cmrnorm2 = paddle.layer.img_cmrnorm(
input=conv2, size=5, scale=0.0001, power=0.75)
pool2 = paddle.layer.img_pool(input=cmrnorm2, pool_size=3, stride=2)
pool3 = paddle.networks.img_conv_group(
input=pool2,
pool_size=3,
pool_stride=2,
conv_num_filter=[384, 384, 256],
conv_filter_size=3,
pool_type=paddle.pooling.Max())
fc1 = paddle.layer.fc(
input=pool3,
size=4096,
act=paddle.activation.Relu(),
layer_attr=paddle.attr.Extra(drop_rate=0.5))
fc2 = paddle.layer.fc(
input=fc1,
size=4096,
act=paddle.activation.Relu(),
layer_attr=paddle.attr.Extra(drop_rate=0.5))
return fc3
2.训练代码(train_alexnet.py)
#coding:utf-8
'''
Created by huxiaoman 2017.12.5
train_alexnet.py:训练alexnet对cifar10数据集进行分类
'''
import sys, os
import paddle.v2 as paddle
#alex模型为不带LRN的
from alexnet import alexnet
#alexnet_lrn为带有lrn的
#from alextnet import alexnet_lrn
with_gpu = os.getenv('WITH_GPU', '0') != '1'
def main():
datadim = 3 * 32 * 32
classdim = 10
# PaddlePaddle init
paddle.init(use_gpu=with_gpu, trainer_count=7)
image = paddle.layer.data(
name="image", type=paddle.data_type.dense_vector(datadim))
# Add neural network config
# option 1. resnet
# net = resnet_cifar10(image, depth=32)
# option 2. vgg
#net = alexnet_lrn(image)
net = alexnet(image)
out = paddle.layer.fc(
input=net, size=classdim, act=paddle.activation.Softmax())
lbl = paddle.layer.data(
name="label", type=paddle.data_type.integer_value(classdim))
cost = paddle.layer.classification_cost(input=out, label=lbl)
# Create parameters
parameters = paddle.parameters.create(cost)
# Create optimizer
momentum_optimizer = paddle.optimizer.Momentum(
momentum=0.9,
regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),
learning_rate=0.1 / 128.0,
learning_rate_decay_a=0.1,
learning_rate_decay_b=50000 * 100,
learning_rate_schedule='discexp')
# End batch and end pass event handler
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "\nPass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
else:
sys.stdout.write('.')
sys.stdout.flush()
if isinstance(event, paddle.event.EndPass):
# save parameters
with open('params_pass_%d.tar' % event.pass_id, 'w') as f:
parameters.to_tar(f)
result = trainer.test(
reader=paddle.batch(
paddle.dataset.cifar.test10(), batch_size=128),
feeding={'image': 0,
'label': 1})
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
# Create trainer
trainer = paddle.trainer.SGD(
cost=cost, parameters=parameters, update_equation=momentum_optimizer)
# Save the inference topology to protobuf.
inference_topology = paddle.topology.Topology(layers=out)
with open("inference_topology.pkl", 'wb') as f:
inference_topology.serialize_for_inference(f)
trainer.train(
reader=paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.train10(), buf_size=50000),
batch_size=128),
num_passes=200,
event_handler=event_handler,
feeding={'image': 0,
'label': 1})
# inference
from PIL import Image
import numpy as np
import os
def load_image(file):
im = Image.open(file)
im = im.resize((32, 32), Image.ANTIALIAS)
im = np.array(im).astype(np.float32)
im = im.transpose((2, 0, 1)) # CHW
im = im[(2, 1, 0), :, :] # BGR
im = im.flatten()
im = im / 255.0
return im
test_data = []
cur_dir = os.path.dirname(os.path.realpath(__file__))
test_data.append((load_image(cur_dir + '/image/dog.png'), ))
probs = paddle.infer(
output_layer=out, parameters=parameters, input=test_data)
lab = np.argsort(-probs) # probs and lab are the results of one batch data
print "Label of image/dog.png is: %d" % lab[0][0]
if __name__ == '__main__':
main()
用Tensorflow实现AlexNet
1.网络结构
def inference(images):
'''
Alexnet模型
输入:images的tensor
返回:Alexnet的最后一层卷积层
'''
parameters = []
# conv1
with tf.name_scope('conv1') as scope:
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64], dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope)
print_activations(conv1)
parameters += [kernel, biases]
# lrn1
with tf.name_scope('lrn1') as scope:
lrn1 = tf.nn.local_response_normalization(conv1,
alpha=1e-4,
beta=0.75,
depth_radius=2,
bias=2.0)
# pool1
pool1 = tf.nn.max_pool(lrn1,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool1')
print_activations(pool1)
# conv2
with tf.name_scope('conv2') as scope:
kernel = tf.Variable(tf.truncated_normal([5, 5, 64, 192], dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[192], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv2)
# lrn2
with tf.name_scope('lrn2') as scope:
lrn2 = tf.nn.local_response_normalization(conv2,
alpha=1e-4,
beta=0.75,
depth_radius=2,
bias=2.0)
# pool2
pool2 = tf.nn.max_pool(lrn2,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool2')
print_activations(pool2)
# conv3
with tf.name_scope('conv3') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 192, 384],
dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[384], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv3 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv3)
# conv4
with tf.name_scope('conv4') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256],
dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv4 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv4)
# conv5
with tf.name_scope('conv5') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256],
dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv5 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv5)
# pool5
pool5 = tf.nn.max_pool(conv5,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool5')
print_activations(pool5)
return pool5, parameters
完整代码可见:alexnet_tf.py
实验结果对比
三个代码跑完后,对比了一下实验结果,如图所示:
可以看到,在batch_size,num_epochs,devices和thread数都相同的条件下,加了LRN的paddlepaddle版的alexnet网络结果效果最好,而时间最短的是不加LRN的alexnet,在时间和精度上都比较平均的是tensorflow版的alexnet,当然,tf版的同样加了LRN,所以LRN对于实验效果还是有一定提升的。
总结
AlexNet在图像分类中是一个比较重要的网络,在学习的过程中不仅要学会写网络结构,知道每一层的结构,更重要的是得知道为什么要这样设计,这样设计有什么好处,如果对某些参数进行一些调整结果会有什么变化?为什么会产生这样的变化。在实际应用中,如果需要对网络结构做一些调整,应该如何调整使得网络更适合我们的实际数据?这些才是我们关心的。也是面试中常常会考察的点。昨天面试了一位工作五年的算法工程师,问道他在项目中用的模型是alexnet,对于alexnet的网络结构并不是非常清楚,如果要改网络结构也不知道如何改,这样其实不好,仅仅把模型跑通只是第一步,后续还有很多工作要做,这也是作为算法工程师的价值体现之一。本文对于alexnet的网络结构参考我之前的领导写的文章,如过有什么不懂的可以留言。
想从零开始学人工智能?
下图扫码了解本文作者胡老师的系列课程吧!
限时优惠价299!
点击“
阅读原文
”,人工智能行业需要你!