查看原文
其他

一样的函数,不一样的upset

Y叔叔 YuLabSMU 2023-01-03

upsetplot大家见得多,首先来个富集分析的实例:

library(DOSE)
data(geneList)
de <- names(geneList)[abs(geneList) > 2]
edo <- enrichDGN(de)

library(enrichplot)
upsetplot(edo)


在v >= 1.5.2版本的enrichplot中,我加入了对GSEA结果的支持,于是你现在也可以用upsetplot来画,但风格不一样哦。

再来个实例:

library(clusterProfiler
kk2 <- gseKEGG(geneList     = geneList,
               organism     = 'hsa',
               nPerm        = 1000,
               minGSSize    = 120,
               pvalueCutoff = 0.05,
               verbose      = FALSE)
upsetplot(kk2) 



Gene set variation analysis (GSVA). Pathway analyses were predominantly performed on the 50 hallmark pathways described in the molecular signature database 16 , exported using the GSEABase package (version 1.36.0). We also assessed metabolic pathway activities using a described curated dataset 48 . To reduce pathway overlaps and pathway redundancies, each gene set associated with a pathway was trimmed to only contain unique genes, and all genes associated to two or more pathways were removed. Most gene sets retained >70% of their associated genes. Next, to assign pathway activity estimates to individual cells, we applied GSVA 49 using standard settings, as implemented in the GSVA package (version 1.22.4).

针对上面这篇文章所采用的策略,似乎我们现在所呈现的图,更好,也能给出更多的信息,你可能还可以发现一些有趣的cross-talk。PS:画图的集合,也是可选的。


往期精彩

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存