其他
反直觉的三门问题,为什么80%的人都错了?
导读:在本文中我们将讨论条件概率:给定结果受到先前事件影响的概率。
你原来的猜测有1/3的可能性是正确的;在这种情况下你输了。但是: 你原来的猜测有2/3的可能性是错误的;在这种情况下你赢了。
你原来的猜测有1/4的可能性是正确的;在这种情况下你输了,但是: 你原来的猜测有3/4的可能性是错误的。在这种情况下,赢的门是剩下的两扇中的一个,那么你有一半的机会猜对。
你原来的猜测有1/n的可能性是正确的;在这种情况下你输了。 你原来的猜测有1/n-1的可能性是错误的。在这种情况下,后面有车的门是剩下的n-2扇中的一个,那么你有1/(n-2)的机会猜对。
你原来的猜测有2/5的可能性是正确的。这时,在蒙提霍尔展示一只山羊之后,剩下的3扇门中有一辆汽车和两只山羊;在这种情况下,你赢的概率是1/3。 你原来的猜测有3/5的可能性是错误的。这时,剩下的3扇门后有两辆汽车和一只山羊;在这种情况下,你赢的概率是2/3。
你原来的猜测有k/n的概率是正确的。在这种情形下,蒙提霍尔给你展示一只山羊后,剩下的n-2扇门中有k-1辆汽车和n-k-1只山羊;相应地,你获胜的概率为(k-1)/(n-2)。另外一方面: 你原来的猜测有(n-k)/n的概率是错误的。在这种情形下,剩下的 n-2扇门中有k辆汽车和n-k-2只山羊;你获胜的概率将是k/n-2。
本文摘编自《哈佛概率论公开课》,经出版方授权发布。
转载请联系微信:DoctorData
推荐语:本书为对基本概率论感兴趣的读者以及之前未接触过此方向的人提供了一个坚实的基础。通过对话的方式和详细的数学推导,在迷人的风格和信息丰富的讨论上取得了平衡。
在公众号对话框输入以下关键词查看更多优质内容!
PPT | 读书 | 书单 | 硬核 | 干货 | 讲明白 | 神操作大数据 | 云计算 | 数据库 | Python | 爬虫 | 可视化AI | 人工智能 | 机器学习 | 深度学习 | NLP5G | 中台 | 用户画像 | 1024 | 数学 | 算法 | 数字孪生
据统计,99%的大咖都关注了这个公众号👇