视频讲解
图文讲解
点击图片,查看大图
▼▼▼▼
同步练习
24.1.2 垂直于弦的直径一、课前预习(5分钟训练)1.如图24-1-2-1,AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,则可推出的相等关系是___________.2.圆中一条弦把和它垂直的直径分成3 cm和4 cm两部分,则这条弦弦长为__________.3.判断正误.(1)直径是圆的对称轴; (2)平分弦的直径垂直于弦. 4.圆O的半径OA=6,OA的垂直平分线交圆O于B、C,那么弦BC的长等于___________.二、课中强化(10分钟训练)1.圆是轴对称图形,它的对称轴是______________.2.如图24-1-2-2,在⊙O中,直径MN垂直于弦AB,垂足为C,图中相等的线段有__________,相等的劣弧有______________.3.在图24-1-2-3中,弦AB的长为24 cm,弦心距OC=5 cm,则⊙O的半径R=__________ cm.4.如图24-1-2-4所示,直径为10 cm的圆中,圆心到弦AB的距离为4 cm.求弦AB的长. 三、课后巩固(30分钟训练)2.如图24-1-2-6,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8 cm,OC=5 cm,则OD的长是( )A.3cm B.2.5 cm C.2 cm D.1 cm3.⊙O半径为10,弦AB=12,CD=16,且AB∥CD.求AB与CD之间的距离. 4.如图24-1-2-7所示,秋千链子的长度为3 m,静止时的秋千踏板(大小忽略不计)距地面0.5 m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为60°,则秋千踏板与地面的最大距离约为多少?5. “五段彩虹展翅飞”,我省利用国债资金修建的,横跨南渡江的琼州大桥如图24-1-2-8(1)已于今年5月12日正式通车,该桥的两边均有五个红色的圆拱,如图24-1-2-8(1).最高的圆拱的跨度为110米,拱高为22米,如图(2),那么这个圆拱所在圆的直径为___________米.6.⊙O的直径为10,弦AB的长为8,P是弦AB上的一个动点,求OP长的取值范围.
思路分析:求出OP长的最小值和最大值即得范围,本题考查垂径定理及勾股定理.该题创新点在于把线段OP看作是一个变量,在动态中确定OP的最大值和最小值.事实上只需作OM⊥AB,求得OM即可.
人教数学9年级上册微课目录
第二十一章 一元二次方程21.1《一元二次方程》精讲
21.2.1《配方法》精讲21.2.2《公式法》精讲21.2.3《因式分解法》精讲21.2.4《一元二次方程的根与系数的关系》精讲21.3《实际问题与一元二次方程》精讲第二十二章 二次函数22.1.1《二次函数》精讲
22.1.2《二次函数y=ax²的图象和性质》精讲22.1.3《二次函数y=a(x-h)2+k的图象和性质》精讲22.1.4《二次函数y=ax²+bx+c的图像和性质》精讲22.2《二次函数与一元二次方程》精讲22.3《实际问题与二次函数》精讲第二十三章 旋转23.1《图形的旋转》精讲
23.2.1《中心对称》精讲
第二十四章 圆第二十五章 概率初步
免责声明:本文所有图文、音视频均来自网络,仅供学习交流使用,版权归原作者所有,除非无法确认,我们都会标明作者及出处,如有侵权烦请告知,我们会立即删除并表示歉意。谢谢!