ACM MM 2021 | 面向多模态情绪识别的双流异质图递归神经网络
原文地址:
https://arxiv.org/abs/2108.03354
https://github.com/ziyujia/HetEmotionNet
https://ziyujia.github.io/
https://ziyujia.github.io/slides/HetEmotionNet_slides.pdf
研究背景
研究动机
▲ 图2:两种EEG通道的空间表示。(a):将EEG信号组织成2D map形式。(b):将EEG信号组织成图的形式
例如,当参与者处于恐惧状态时,心电信号反映更大的心率加速,伴随着 GSR 信号的增加以及右额叶脑电信号的高激活程度。但现有方法仅分别建模了多模态生理信号的相关性或异质性。
论文贡献
构建了多模态生理信号数据的时空和频空图表示。 提出了一种基于图的同时融合生理信号时-频-空信息的双流结构。 同时提取了多模态生理数据的相关性和异质性。 在公开的多模态情绪识别数据集 DEAP 与 MAHNOB-HCI 上的实验表明,该模型相较基线方法有着出色的性能。
HetEmotionNet:双流异质图递归神经网络
设计了一种面向多模态情绪识别的异质时空和频空图表示。 通过整合基于图的时空流和频空流在一个模型中来同时提取和融合多模态生理信号的时频空特征。
采用了 GTN 来建模多模态生理数据的异质性;GCN 来捕获不同通道数据间的相关性。GRU 来捕获时域和频域中的依赖关系。
先计算一个样本内不同通道间 128 个时间点数据的互信息值作为边的权重和邻接矩阵。步骤如图 5 中 ① 所示。 为了构造异质图,我们分别将每个时间点的所有通道的值作为节点特征并和上一步计算得到的邻接矩阵构成了异质图。步骤如图 5 中 ② 所示。 最后我们将 128 个时间点构建的异质图拼接起来构成了异质时空图序列。步骤如图 5 中 ③ 所示。
首先对每个通道的值分别在四个频段上计算差分熵(DE)特征,步骤如图 5中 ④ 所示。
然后分别将每个频带的所有通道值作为节点特征并和邻接矩阵组成了异质图,步骤如图 5 中 ⑤ 所示。 最后将四个频带构建的异质图拼接得到异质频空图序列。步骤如图 5 中 ⑥ 所示。
GTN 主要通过从异质图中自动提取一些元路径(即不同通道间的关系)来建模多模态数据的异质性。 GCN 利用 GTN 提取得到的元路径进行图卷积。对于相同的节点特征,文中分别为使用不同元路径的结果设置了不同的权重并进行了加权求和以重新构筑提取后的时空图序列。 GRU 利用 GCN 得到的图序列来建模不同时间点。对于提取得到的图序列,文中将每个时间点的图对应的送入 GRU 层相应的单元并将提取后所有单元的信息拼接起来送入分类器进行分类。
实验
结论
特别鸣谢
感谢 TCCI 天桥脑科学研究院对于 PaperWeekly 的支持。TCCI 关注大脑探知、大脑功能和大脑健康。
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:hr@paperweekly.site
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧