npj: 超前预测法——原子结构的局部优化
海归学者发起的公益学术平台
分享信息,整合资源
交流学术,偶尔风月
如何快速预测原子晶体结构是预测新材料物理特性的基础。基于第一原理计算的晶体结构预测通常是通过对随机生成的初始结构进行弛豫来实现的。结构的弛豫需要多个优化步骤。对所有初始结构进行充分的弛豫是非常耗时的,但要事先确定哪一个初始结构会产生最优解是非常困难的。
来自东京大学的Kei Terayama和Koji Tsuda教授等人设计了一种新的晶体结构预测和加速优化方法,即基于二次逼近(Quadratic Approximation)的晶体结构预测优化方法——超前预测法(Look Ahead)。按此方法先生成大量候选结构,依据其能量高低进行评分,最后优先对得分最低的结构进行局部优化。超前预测法对每个候选结构进行了优化分配,用最少的局部优化步骤来识别最稳定的结构。他们使用7种已知系统(Si8、Si16、Na8Cl8、Na16Cl16、Y2Co17、Al4O6和Ga8As8)的晶体结构作模拟预测,结果显示,与随机搜索方法相比,所需的步骤总数虽因系统而异,但均可减少20倍以上。这种基于控制局部优化步骤的晶体结构预测新方法也可帮助我们识别新的分子,并可用于基于第一性原理计算的各种局部优化控制,在有限的计算资源下获得最佳结果。
该文近期发表于npj Computational Materials 4: 32 (2018),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。
Fine-grained optimization method for crystal structure prediction
Kei Terayama, Tomoki Yamashita, Tamio Oguchi & Koji Tsuda
Crystal structure prediction based on first-principles calculations is often achieved by applying relaxation to randomly generated initial structures. Relaxing a structure requires multiple optimization steps. It is time consuming to fully relax all the initial structures, but it is difficult to figure out which initial structure leads to the optimal solution in advance. In this paper, we propose a optimization method for crystal structure prediction, called Look Ahead based on Quadratic Approximation, that optimally assigns optimization steps to each candidate structure. It allows us to identify the most stable structure with a minimum number of total local optimization steps. Our simulations using known systems Si, NaCl, Y2Co17, Al2O3, and GaAs showed that the computational cost can be reduced significantly compared to random search. This method can be applied for controlling all kinds of local optimizations based on first-principles calculations to obtain best results under restricted computational resources.
扩展阅读
本文系网易新闻·网易号“各有态度”特色内容
媒体转载联系授权请看下方