npj: 等离激元增强的光-物质相互作用—设计、设计、设计
海归学者发起的公益学术平台
分享信息,整合资源
交流学术,偶尔风月
在过去的几十年中,表面等离激元因其可将光场局域在亚波长甚至是纳米尺度的空间范围内而受到广泛关注,可显著增强光和物质相互作用。表面等离激元,一般是在金属-介质表面处可支持的一种特殊表面波,即自由电子的集体相干振荡行为。表面等离激元可分为两大类,即局域和传播型表面等离激元。得益于表面等离激元结构中几个数量级的电场增强,各种光和物质的相互作用过程等离子体结构内的电场可有几个数量级的增强空间,因此得以显著地增强各种光和物质相互作用过程,包括了荧光、拉曼散射、非线性光学效应、光热效应、光声效应、催化、光伏转换等。
分别来自中国科学院上海硅酸盐研究所高性能与超微结构国家重点实验室和华南理工大学物理与光电子学院的杨勇研究员和李志远教授领衔的两个研究组,具体讨论了具有各种形貌和结构的金属、半导体和二维材料中的表面等离激元特性,相应波长范围覆盖了紫外、可见、近红外、远红外的波段。该综述还进一步讨论了表面等离激元增强的光和物质相互作用的原理以及表面等离激元热点的重要作用。该综述对几种典型的表面等离激元增强的光和物质相互作用,包括荧光、拉曼散射、非线性光学效应、光热效应、光声效应、催化、光伏转换等,做了深入的探讨和回顾。该文将为未来构建高性能表面等离激元材料和器件提供重要指导。
该文近期发表于npj Computational Materials 5: 45 (2019),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。
Plasmon-enhanced light–matter interactions and applications
Huakang Yu, Yusi Peng, Yong Yang & Zhi-Yuan Li
Surface plasmons are coherent and collective electron oscillations confined at the dielectric–metal interface. Benefitting from the inherent subwavelength nature of spatial profile, surface plasmons can greatly accumulate the optical field and energy on the nanoscale and dramatically enhance various light–matter interactions. The properties of surface plasmons are strongly related to materials and structures, so that metals, semiconductors and two-dimensional materials with various morphologies and structures can have alternating plasmonic wavelengths ranging from ultraviolet, visible, near infrared to far infrared. Because the electric field can be enhanced by orders of magnitude within plasmonic structures, various light–matter interaction processes including fluorescence, Raman scattering, heat generation, photoacoustic effects, photocatalysis, nonlinear optical conversion, and solar energy conversion, can be significantly enhanced and these have been confirmed by both theoretical, computational and experimental studies. In this review, we present a concise introduction and discussion of various plasmon-enhanced light–matter interaction processes. We discuss the physical and chemical principles, influencing factors, computational and theoretical methods, and practical applications of these plasmon-enhanced processes and phenomena, with a hope to deliver guidelines for constructing future high-performance plasmonic devices and technologies.
扩展阅读
本文系网易新闻·网易号“各有态度”特色内容
媒体转载联系授权请看下方