海归学者发起的公益学术平台
分享信息,整合资源
交流学术,偶尔风月
物质的非弹性散射使我们能够探测到准粒子(QPs),如声子(量子化的晶格振动)、磁子(量子化的自旋激发)和极子。这些准粒子具有有限的能量和寿命,携带着准粒子内和准粒子间相互作用及其耦合强度的信息,对于理解材料对外场刺激的反应具有重要作用。导热性、热容量和相变等许多材料特性经常被直接使用各种准粒子来描述。光学、X射线、中子和电子散射方法(例如拉曼散射、非弹性X射线散射(IXS)、非弹性中子散射(INS)和电子能量损失光谱(EELS)等)已被常规用于测量这些准粒子。通常这些测量是在动量和能量空间(k-ω)中进行的,缺乏关于时间动态的信息(即k-t和x-t成像),动量或实空间的时间演化范围可从飞秒到几个纳秒。
为了对k-t和x-t动态进行成像,需要具有两个超短脉冲的泵-探针装置,其中探针脉冲的持续时间必须短于被探测的特征时间尺度。得益于巨大的技术进步,产生超短的X射线和电子脉冲、并可对k-t和x-t空间的晶格动态进行成像的设想已经成为可能。由印度理工学院机械工程系的Dipanshu Bansal教授和物理系的Gopal Dixit教授共同领导的团队,建立了一套非弹性散射方法,具有原子尺度时空分辨率的晶格动力学成像功能。利用非弹性散射测量的优异能量和动量分辨率,在重建晶格动力学过程中可以实现几十飞秒的时间分辨率和~1 Å的空间分辨率。作者提出的理论方法允许直接成像的晶格动力学,并使我们能够提取特定声子模式的寿命。此外,通过选择干扰源在实空间的空间范围,可以灵活地决定是单个声子模还是多个声子模参与了动力学过程。模拟结果与测量到的锗晶格动力学之间具有良好的一致性,为所提出的方法提供了信心和稳健性。作者认为,该方法将成为时间分辨衍射方法成像晶格动力学的替代方法,并有利于在时间分辨衍射难以探测时完成任务,如中子散射和原位测量条件下。该文近期发表于npj Computational Materials 7: 7 (2021),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。
Four-dimensional imaging of lattice dynamics using ab-initio simulation
Navdeep Rana, Aditya Prasad Roy, Dipanshu Bansal & Gopal Dixit
Time-resolved mapping of lattice dynamics in real- and momentum-space is essential to better understand several ubiquitous phenomena such as heat transport, displacive phase transition, thermal conductivity, and many more. In this regard, time-resolved diffraction and microscopy methods are employed to image the induced lattice dynamics within a pump–probe configuration. In this work, we demonstrate that inelastic scattering methods, with the aid of theoretical simulation, are competent to provide similar information as one could obtain from the time-resolved diffraction and imaging measurements. To illustrate the robustness of the proposed method, our simulated result of lattice dynamics in germanium is in excellent agreement with the time-resolved x-ray diffuse scattering measurement performed using x-ray free-electron laser. For a given inelastic scattering data in energy and momentum space, the proposed method is useful to image in-situ lattice dynamics under different environmental conditions of temperature, pressure, and magnetic field. Moreover, the technique will profoundly impact where time-resolved diffraction within the pump–probe setup is not feasible, for instance, in inelastic neutron scattering.
本文系网易新闻·网易号“各有态度”特色内容
媒体转载联系授权请看下方