数据的价值到底如何衡量?
点击上方
请您点击“与数据同行”以“关注”,关于数据的实践与思考,每周一我在这里等你!
作者:傅一平 就职于浙江移动大数据中心 微信号:fuyipingmnb 欢迎交流!
大数据对内支撑的时候,往往会被投资部门质疑,你的数据为什么要存储这么长时间,这些数据到底能产生多大的价值?请给个理由?
说来也奇怪,我们做数据的,以数据为谋生手段,却很难评估自己的数据到底能创造多高的价值?
有一种评估数据价值的方法肯定是错的,即基于数据的类型、周期、粒度、硬件及人工成本等维度。
记得刚做变现的时候就想着把数据的生成和建模成本计算出来,由此作为定价的依据,姑且不说能否倒腾出什么计算公式,即使有了公式其实也没有意义。
为什么呢?
我们还是要回到每个人就应该知道的答案上吧:在市场上,决定价格的最重要因素,是需求,数据也一样。
千万不要误以为价格和成本直接相关,它们只是间接部分相关,人们为某个标签付钱,是因为他们真的需要,而不是因为这个标签的制作成本有多高。
传统企业做对外大数据价值变现有各种驱动,包括获得更多的收入、更大的影响力等等,但有一个好处是隐性的,即获得了一种最为客观评估数据价值的方法。
客户的需求和获得的收入就像是一座灯塔,指引着企业所有的数据资源向这边倾斜,无论是人力成本、软件成本还是硬件成本。
比如做对外拓客,建模师就可以非常好的量化自己的贡献,客户买的单就是最靠谱的依据,这是巨大的进步。
但对内就非常困难了。
这是当前BI、经分、大数据对内运营中的一个困惑,虽然也许我们仍然无法准确评估数据对内的价值,但有了对外评估的参照,我们起码可以知道为什么对内评估会这么难 ?
首先,数据对内变现跟对外有个最大区别,就是对内不是市场化的运作,供需关系导致的价值体系完全失效,对内无论是数据、模型还是产品,业务人员可以随便使用,数据提供者不能向业务人员收钱,业务人员也没有选择的余地,企业内搞虚拟结算又往往显得自说自话,缺乏公信力。
其次,对内数据的使用过程往往是个长流程,数据嵌套在公司的生产流程中的确发挥了价值,但其所占的比例很难说清楚,这里又可分为以下一些价值体现方式,当然不仅限于这几种:营销、报告和产品:
针对营销数据,比如要评估一个外呼拓客的总收益,可以根据获得的客户数乘以未来预期价值大致能测算出来,但到底多少算是外呼渠道的贡献,多少算是营销清单的贡献呢?
假如将总体收益当成数据的价值,就会形成评估泡沫,毕竟企业的营销成本可是刚刚的,亲兄弟还是要明算账,管钱的部门可不是好忽悠的。
比较科学的方法是做AB测试,所有条件保持一致的条件下,通过数据的改变(比如准确度)来评估提升的效益,但对于大多企业来讲,实施成本还是太高了,特别是线下的场景,虽然点的评估有时一鸣惊人,比如某次营销成功率提升100倍,但那又怎么样,无法说明数据对于企业的整体价值有多大。
针对报告数据或数据产品,其价值更是取决于人,业务人员从这些数据和产品使用中获得了多少额外的收益,没有人能说得清楚,很多企业往往只能以报表、产品点击量来作为评估数据价值的一个依据也是无奈之举,但对内点击流量的价值并没有公允的评判标准,业务人员点击一次报表算多少钱?显然没有答案。
可以看到,一旦数据脱离了市场定价体系,对内数据的价值评估方式必然跟企业的流程、机制及数据价值呈现方式相关,而其中每一项都不是那么容易计算的。
再次,作为使用者,业务人员(决策者)其实是最有发言权来评估数据的价值的,但其驱动力往往不高,因为没必要为数据付钱就没必要说清楚这个数据值多少,即使提供了也很难为评估的质量负责,或者就流于形式。
这个时候,数据提供方为了证明自己的价值,往往需要越界到业务前端去评估数据价值,但其实也是勉为其难,特别容易陷入断章取义的评估陷阱,既当运动员又当裁判员,言不正名不顺。
就这样陷入了数据评估的死循环。
大数据时代,大家都看到了数据的巨大价值,但企业再有钱,也不可能无限制的投入,需要给投资一个信服的理由。
对外数据变现虽然处于起步阶段,但其对于数据的利用将是最高效的,诸如金融验真查询一次多少钱绝对不是根据成本算出来的,而是由需求决定的,数据产品也一样,市场就像一只看不见的手决定着数据该有的价格,决定着企业未来数据投资的方向。
对内数据价值评估则复杂的多,一种方法是根据不同的数据价值体现方式给出不同的评估标准,营销类的需要针对各种营销模式进行梳理,比如按渠道、政策等类型给出短信流量类营销(比如随机)基准水平值(比如成功率),通过AB测试出精准数据的额外价值(注:不考虑成本的营销就是啥流氓了),以后凡是超出这个基准值的部分就算是数据的价值了,但越复杂的市场营销体系就意味着越复杂的计算方式,管理成本太高了,对内数据类产品就只能根据UV,PV来计算了,但每一类产品的UV,PV单价又是不一样的。
还有一种就是将数据服务部门独立出来,按实结算,回归市场体系,比如运营商BI集成商评估自己的数据服务价值就非常容易,合同额大小呗,当然弊端就是沟通成本会比较高,对于一个致力于创新性的企业,似乎也不是理想的选择,没看到BAT把自己的数据服务部门独立出来吧。
无论如何,对内数据的价值评估,数据提供者的确有举证的职责,对于自身的发展也有利,就好比天使投资,人家不奢望你马上赚钱,但也有义务给他们画个饼。
但即使是这一点,数据提供者也很难做到,大多将数据服务当成了需求,重建设而轻运营,这个时候,问题倒不在于评估的能否科学,而在于有没有做了这个评估,能否将评估当成数据服务的一个原则,能否将评估作为下次改进的依据。
比如机械的做报表而不去评估报表的使用情况,疯狂的取数却不去咨询取数的目的和效果,好不容易做了标签库却对访问人数停滞不前无动于衷,好不容易开发了模型却不去常态化的跟踪效果,诸如此类太多了,而对外变现的市场机制显然会保证这一点。
历史部分文章
(关注微信公众号"ysjtx_fyp"后点击精彩文章目录可分类浏览全部)
传统BI的认知:
大数据的实践:
数据管理的领悟:
《七幅图读懂企业的数据字典》
数据人员的修养:
运营商大数据:
我的读书笔记: