查看原文
其他

NeuroAI:神经人工智能催化下一代人工智能革命

紫东君 人民中科 2024-01-09

✦ ✦ ✦ ✦ 


NeuroAI 是神经科学和人工智能的交叉点,这一新兴领域假定,对神经计算的更好理解将帮助催化人工智能的下一次革命。


✦    ✦    ✦    ✦    


未来的人工智能是否需要神经科学?

历史上,神经科学一直是人工智能发展的关键驱动力和灵感来源,特别是视觉、基于奖励的学习、与物理世界的互动以及语言等人类和其他动物非常擅长的领域,人工智能曾借助神经科学在这些领域取得长足进步。

但近年来,人工智能的研究方式似乎正在远离神经科学,与此同时,人工智能在追赶人类智能的路上困难不断。在此背景下,一股回归神经科学的人工智能热潮正在形成。


近日,一份白皮书发出了“NeuroAI 将催化下一代人工智能革命”的宣言。

神经科学和人工智能领域的多位著名学者近日在 arXiv 上发表 NeuroAI 白皮书认为,神经科学长期以来一直是推动人工智能(AI)发展的重要驱动力,NeuroAI 领域的基础研究将推动下一代人工智能的进程。



NeuroAI:智能的本质在于感觉运动


关于NeuroAI

在科学家研究AI的时候,一般会试图模仿大脑的运作来制造智能机器。在这个过程中,他们发现可以借助AI的力量来反向研究大脑的结构。这一新兴的AI技术被称为“神经AI(NeuroAI)”。


人工智能向神经科学的回归是必然的。

人工智能革命的种子正是几十年前在计算神经科学中播下的,神经学家 McCulloch 和 Pitts 在 1943 年首次提出神经元性质的数学表达形式,他们试图了解大脑是如何计算的。

而冯·诺依曼发明“冯诺依曼计算机体系结构”,事实上也是来源于最早在构建“人工大脑”方面的工作,他从1940 年代还非常有限的大脑知识中汲取了灵感。

掀起最近一轮人工智能浪潮的深度卷积网络,则是建立在人工神经网络 (ANN) 之上的,该网络直接从猫的视觉处理电路方面的研究中得到启发。

同样,强化学习 (RL) 的发展也是直接从动物在学习过程中的神经活动中汲取了灵感。


几十年后的今天,人工神经网络和强化学习已经成为人工智能的主流技术,所以在大众看来,“通用人工智能”这一长期目标似乎已经在我们掌握之中。

然而,与这种乐观主义相反,许多一线的人工智能研究人员认为,我们仍需要取得新的重大突破,才有可能构建能够完成人类的所有工作的人工系统,而且不仅是人类,甚至包括像老鼠这样更简单的动物。

目前的 AI 还远远未达到这种目标:

AI 可以在国际象棋和围棋等游戏中轻松击败任何人类对手,但并不具有足够的稳健性,在面对新事物时经常遇到困难;AI 还做不到‘”走到架子上、取下棋盘、布置棋子并在游戏中移动棋子”这一系列的简单行为;AI 的感觉运动能力还无法与四岁儿童相媲美,甚至是更简单的动物也比不上;AI 缺乏与不可预测的世界互动的能力,难以处理新情况,而这种能力是所有动物毫不费力就获得的基本能力。


因此,越来越多的 AI 研究人员怀疑,再沿着当前的路子往前走,难以解决以上问题。

既然我们的目标是让AI拥有更多自然智能,那么我们很可能就需要来自自然智能系统的新灵感。

虽然如卷积人工神经网络和强化学习等都受到了神经科学的启发,但目前机器学习的大部分研究都在走另一条路,其所采用的方法受到神经科学几十年前发现的启发,比如基于大脑注意力机制的神经网络。

现代神经科学的确仍在影响着 AI ,但影响还很微小。这是一种机会的错失。在过去的几十年里,我们已经积累了大量关于大脑的知识,这使我们能够深入了解支撑自然智能的解剖结构和功能结构。


正是在这样的背景下,这些科学家在这份白皮书中发出宣言:

NeuroAI 是神经科学和 AI 交叉的新兴领域,其所基于的前提是更好地理解神经计算将揭示智能的基本成分,它将催化 AI 的下一次革命,最终实现具有匹敌甚至超越人类能力的人工智能体。

他们认为,现在是开展大规模工作来识别和理解生物智能原理,并将其抽象出来用于计算机和机器人系统的大好时机。

NeuroAI 的挑战:具身图灵测试


1950 年,艾伦·图灵提出“模仿游戏” ,用于测试机器所表现出的与人类相同、或无法区分的智能行为的能力。在那场比赛中,人类法官需要评估真人与受过训练、可以模仿人类反应的机器之间的自然语言对话。

图灵提出,相比于无法回答的“机器是否可以思考”问题,我们可以确定的是,机器的会话能力与人类能否区分。这当中隐含的观点是,语言代表了人类智能的顶峰,因此,能够对话的机器肯定是智能的。


在某种程度上,图灵是对的,但另一方面他也错了。

虽然没有 AI 能通过图灵测试,但近日,在大型文本库上训练的语言系统已经实现了有说服力的对话,这一成功在某种程度上也揭示了,我们容易将智力、能动性甚至意识归因于对话者。但同时,这些系统在某些推理任务上的表现仍然很差,这凸显了图灵忽视的一个事实,即智力远不止语言能力。


当前,自然语言处理(NLP)系统所犯的许多错误也说明了AI 对语义、因果推理和常识的根本缺乏。对这些模型而言,单词的意义在于它们在统计学上的共现性,而非现实世界的基础,所以即使是最先进的语言模型,尽管能力越来越大,但它们在一些基本的物理常识方面还是表现不佳。

最初制定的图灵测试并没有探究 AI 在与动物共享、以灵活方式理解物理世界的能力,只是建立一个简单的定性标准,以此来判断我们在构建 AI 方面取得的进展。而这当中的理解和能力,可能是建立在人类的感知和运动能力之上的,是通过无数代自然选择磨练出来的。

对此,作者在白皮书中提出了一个扩展的“具身图灵测试”(The Embodied Turing Test ),其中就包括了高级感觉运动能力,可将 AI 与人类和其他动物的交互进行基准测试和比较。

下面是白皮书所介绍的感觉运动能力的几个共同特征:


  • 与世界互动:有目的地四处走动、并与环境互动是动物的决定性特征。
  • 动物行为的灵活性:了解特定的神经网络的另一个目标,是开发能够以与个体动物产生的行为范围相呼应的方式、参与大量灵活和多样化任务的人工智能系统。
  • 能量效率:用于训练人工智能系统的能量总量很大并且增长迅速。相比之下,生物系统的能量效率要高得多。

而如何开发具身图灵测试的 AI ?

作者在白皮书中设想了如何应对具身图灵测试的路线,从进化史角度把AI 系统的具身图灵测试分解为从中低级生物进阶到更复杂生物的智能。详细的罗列了如何实现具身图灵测试的需求:

首先,是培养在工程/计算科学和神经科学方面同样擅长的新一代人工智能研究人员;

其次,需要创建一个能够开发和测试这些虚拟智能体的共享平台。

第三,需要支持神经计算的基础理论和实验研究。


结论

尽管神经科学推动人工智能发展的历史由来已久,而且其未来发展也有巨大的潜力,但人工智能界的大多数工程师和计算科学家都不知道可以借神经科学这股东风。
“工程师研究鸟类并不是为了造更好的飞机”是大家常说的一句话。但这个类比很失败,其部分原因是航空先驱确实研究过鸟类,而且现代也仍有学者在研究。此外,这种类比在一个更基本的层面上也不成立:现代航空工程的目标不是实现「鸟类水平」的飞行,但是人工智能的主要目标确实是实现,或者说超过「人类水平」的智能。
正如计算机在许多方面超过人类一样(比如计算质数的能力),飞机在速度、航程和载货能力等方面也超过了鸟类。如果航空工程师的目标确实是建造一种具有「鸟类水平」能力的机器,这种机器能够穿过茂密的森林,轻轻地降落在树枝上,那么这些工程师就得去密切关注鸟类是如何做到这一点的。
同样,如果人工智能的目标是达到动物级别的常识性感觉运动智能,研究人员最好要向动物学习,学习动物在这个不可预测的世界中进化出的行为方式。

责编:岳青植

监制:李红梅


文章参考:

1.《Bengio、LeCun 等人联名发布 NeuroAI 白皮书:智能的本质是感觉运动能力,AI 迎来具身图灵测试大挑战》AI 科技评论2.《Bengio、LeCun等人联名上书,呼吁美国投资神经AI》机器之心


往期回顾

“白泽”助力构建数字化知识产权协同保护大格局

借力国家重点实验室 效力重大战略科技项目

 

 

赋能网络空间内容治理 护航现代化国家安全体系建设

关于人民中科人民中科智能技术有限公司,是人民网与中科院自动化所共同发起设立的“人工智能技术引擎”和科技成果转化平台,拥有世界领先的内容理解技术,核心产品是跨模态智能内容搜索引擎“白泽”,初始应用场景是数字世界的安全,目标是成为全球内容科技领导企业。
继续滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存