查看原文
其他

【精彩论文】基于特征选择和组合模型的短期电力负荷预测

中国电力 中国电力 2023-12-18






观点凝练





摘要:提出基于特征选择和组合模型的短期电力负荷预测方法。首先将特征向量按特点分为2类,分别使用斯皮尔曼相关系数、最大相关最小冗余算法进行选择,依据贝叶斯信息量准则确定最优特征向量维度。然后使用3个不同的核函数建立单核递归支持向量回归模型并完成预测。最后构建神经网络,进行实验分析。仿真结果表明所提方法具有较高的预测精度与鲁棒性。
结论:本文针对特征选择和多核SVR线性组合问题提出了解决优化方案,不仅使模型特征选择的方法更严谨,能够得到高相关低冗余的特征向量,同时保证较低的模型复杂度,还使用可以进行自学习的浅层神经网络作为单核RSVR模型的组合工具,从而替代了采用误差倒数法的线性组合方式。整个模型并非各类算法的盲目堆砌。通过实验对比,3核RSVR-NN组合模型预测性能不仅优于单核模型与其他机器算法模型,也优于3核RSVR线性组合模型。

在后续的研究工作中,可尝试多个“混合核函数”SVR模型组合或者将SVR与其他机器学习算法进行组合,进一步提升整体负荷预测效果。


引文信息

徐宇颂, 邹山花, 卢先领. 基于特征选择和组合模型的短期电力负荷预测[J]. 中国电力, 2022, 55(7): 121-127.XU Yusong, ZOU Shanhua, LU Xianling. Short-term load forecasting based on feature selection and combination model[J]. Electric Power, 2022, 55(7): 121-127.


欢迎点击文后“阅读原文”跳转期刊官网,获取更多信息!




 往期回顾 


《中国电力》2022年第10期详览【精彩论文】电网电压不平衡下储能变流器的控制策略【精彩论文】交直流混合微电网互联变流器微分平坦控制【精彩论文】计及设备信息的配电设备多组巡检路径优化策略【精彩论文】智能电能表批次故障预警和寿命预估方法【征稿启事】“面向电网设备状态感知的低功耗无线传感网技术及应用”专题征稿启事【征稿启事】“新能源与储能协调规划运行”专题征稿启事
【征稿启事】“面向典型行业的能源局域网规划与低碳运行技术”征稿启事【征稿启事】“面向新型电力系统的氢能及其系统集成控制关键技术”征稿启事


编辑:于静茹
校对:李博

审核:方彤

声明

根据国家版权局最新规定,纸媒、网站、微博、微信公众号转载、摘编《中国电力》编辑部的作品,转载时要包含本微信号名称、二维码等关键信息,在文首注明《中国电力》原创。个人请按本微信原文转发、分享。欢迎大家转载分享。

继续滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存