物联网安全领域机器学习方法的研究与前景
摘 要
物联网对我们的生活已经产生了巨大的影响,它体现在经济、商业众多方面。网络中的节点通常是资源受限的,因此成为了网络攻击的重要目标之一。人们通常利用传统的加密方法来解决物联网网络中的安全隐私问题,然而物联网节点的特性使得现有的方法无法支撑起整个物联网网络的架构,这种现象在一定程度上是由于资源受限以及物联网设备产生的大量实时数据所导致的。机器学习和深度学习能够在物联网设备和网络中提供智能的解决方法,因此能够被用来处理众多的物联网安全问题。本文系统地回顾了物联网网络的安全需求、攻击向量和当前的安全解决方案,基于现有的解决方案,讨论了基于机器学习和深度学习的物联网安全未来的研究方向。
一、背 景
二、当前挑战
三、机器学习的应用
法医用的人脸识别:姿势、灯光、遮挡(眼镜、胡须)、化妆、发型等;
安全加密的字符识别:不同的手写风格;
恶意代码识别:识别应用程序和软件中的恶意代码。
分布式拒绝服务检测:通过行为分析检测对基础设施的DDoS攻击[3];
图1 机器学习方法
四、机器学习在物联网安全的应用
DL依赖于强函数逼近、评估和学习能力,从而为物联网领域的各方面问题包括安全与隐私问题提供了更有效的解决方案。物联网设备由于其资源限制,可能无法运行复杂的计算任务,如通信、分析和预测等等,因此,与传统的理论和技术相比,基于DL的算法具有更好的性能,此外,DNN可以很好地定位和定义任何类型(文本、图像、音频)的低维表示。DRL及其变体用于异构物联网网络中的认证和DDoS检测,通常情况下主要用于安全和隐私的DRL算法有:深度确定性策略梯度、连续DQN、优先级体验重放、深度SARSA等等[5]。
五、机器学习在物联网安全应用中的局限性
六、总结与展望
参考文献
[1] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications,” IEEE Internet of Things Journal, vol. 4, pp. 1125–1142, Oct 2017.
[2] M. Ammar, G. Russello, and B. Crispo, “Internet of things: A survey on the security of iot frameworks,” Journal of Information Security and Applications, vol. 38, pp. 8 – 27, 2018.
[3] D. E. Kouicem, A. Bouabdallah, and H. Lakhlef, “Internet of things security: A top-down survey,” Computer Networks, vol. 141, pp. 199
– 221, 2018.
[4] M. binti Mohamad Noor and W. H. Hassan, “Current research on internet of things (iot) security: A survey,” Computer Networks, vol. 148, pp. 283 – 294, 2019.
[5] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep learning for iot big data and streaming analytics: A survey,” IEEE Communications Surveys Tutorials, vol. 20, pp. 2923–2960, Fourthquarter 2018.
[6] T. Wang, C.-K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep Learning for Wireless Physical Layer:Opportunities and Challenges,” IEEE China Communication, vol. 14, pp. 92–111, October 2017.
中国保密协会
科学技术分会
长按扫码关注我们
作者:杨驰宇
责编:蔡北平
2022往期精彩文章TOP5回顾
近期精彩文章回顾