网络空间安全中的人工智能技术综述
摘 要
随着网络攻击的数量显著增加,网络攻击的类型也越来越复杂。于是,如何设计一个合理的方式变得至关重要,传统的网络安全方案已经不足以有效防止面对网络攻击的数据泄露。
为了应对使用新技术和新工具来攻击破坏数据的黑客,人工智能(Artificial Intelligence)技术被引入了网络安全领域,构建应对攻击的智能模型。人工智能技术一直在迅速发展,可以作为网络安全领域的基本工具去应对愈发复杂的数据安全问题。基于人工智能,可以实现高效而强大的网络防御工具,以识别恶意软件攻击、网络入侵、网络钓鱼和垃圾邮件、数据泄露等。本文将回顾人工智能应用于网络安全的技术和作用,并总结现有研究的优缺点。
关键词:网络安全;人工智能;网络攻击
01
引 言
02
人工智能(Artificial Intelligence)概述
辅助智能 改善人们已经在做的事情。
增强的智能 使人们能够做他们做不到的事情。
自主智能 这是机器自主行动的特征。
03
网络安全中的人工智能技术
有监督学习:在这种类型的学习中需要有一个带有大量标记的数据集的训练过程。对数据集可以进行划分,划分出训练集和测试集,训练集训练完成之后,使用测试集合数据进行验证。学习方法通常使用分类机制或者是回归机制。回归算法根据输入的一个或者多个连续值数字生成输出或者预测值。分类算法则是将数据分类,与回归相反,分类算法生成离散输出。
无监督学习:与有监督学习相反,无监督学习使用的是没有标记过的数据进行训练。无监督学习算法通常是用于对数据进行聚类,降维或者是数据密度估计。
强化学习:这种类型的算法是机器学习的第三大分支,是基于奖惩制度来学习最佳的行为。强化学习可以被认为是有监督学习和无监督学习的一种结合。适用于数据有限或者没有给出数据的情况。[4]
专家系统(ES):也被称为是知识系统。有两个主要组件:一个是一组知识,这是专家系统的核心,包含着积累的经验;第二个组件是推理机,用于推理预定义的知识并找到给定问题的答案。根据推理方案,系统可以解决基于案例或者基于规则的推理。
基于案例的推理:这种推理假设过去的问题案例解决方案可以用于解决新的问题案例。会通过回顾过去的类似问题案例,对新的方案进行评估,并会根据需要进行修订,然后将之添加到知识库中,这样可以不断地学习新问题并不断增加推理的正确率。 基于规则的推理:这种推理使用专家的规则来解决问题。规则由两部分组成,条件和动作。问题分两步进行分析,首先评估条件,然后采取相应适当的措施。与上述基于案例的推理不同,基于规则的系统不会自动学习新规则或者改变当前的学习规则。
机器学习(ML):根据Arthur Samuel[5]给出的定义:“机器学习是一种方法,使计算机在没有明确编程的情况下进行学习。”机器学习给我们提供了这样一种系统,可以发现并形式化数据,并且可以从经验中学习改进。学习过程会从观察示例数据开始,以用来观察对应任务数据的模式,并能够在未来出更好的决策。在有这些知识之后,系统可以看到更多未看到示例的属性。
机器学习是通过统计数据来提取信息、发现模式并得出结论的。即使在使用大量数据的时候也是如此。机器学习算法大约可以分为三类:有监督学习、无监督学习、强化学习。在网络安全领域最常用的算法有:决策树算法、支持向量机、贝叶斯算法、K-近邻算法、随机森林、关联规则算法、聚类算法、主成分分析等。
深度学习(DL):也被称为深度神经学习。它使用数据教计算机如何完成人类通常能够完成的任务。DL包括ML,机器可以通过经验和技能进行主动学习而不需要人工干预。
生物启发计算:它是一个智能算法和方法的集合,利用生物行为特性去解决广泛的复杂问题 。传统的人工智能创造的是智能,这是由机器演示过来的,由程序创造的。而生物启发的计算则是始于一套简单的规则和简单的有机体,他们与这些规则紧密对应。在仿生计算中,以下技术最常用于网络安全领域:遗传算法、进化策略、蚁群优化、粒子群优化以及人工免疫系统等等。
04
基于人工智能的网络空间安全技术
软件利用和恶意识别:
软件利用:软件中存在漏洞,总会有一部分是可利用漏洞。攻击者会使用这些软件漏洞攻击底层软件应用程序。比较流行的软件漏洞包括:整数溢出、SQL注入、缓冲区溢出、跨站点脚本、跨站点请求伪造等等。人类去逐行检查代码会是一项复杂的任务。但是如果计算机被教导如何检查,应该可以做到。Benoit Moral[6]描述了人工智能帮助提高应用程序安全性的方法。提倡使用基于知识的系统、概率推理和贝叶斯算法来检测软件漏洞。
恶意软件识别:这是当下的一种常见的网络攻击方法。当前流行的恶意软件的病毒包括有病毒、蠕虫和特洛伊木马等等。由于恶意病毒对网络和社会的影响是巨大的,因此已经有很多的研究被完成。列出一些研究,例如Chowdury[7]等人定义了一个使用数据挖掘和机器学习分类方法区队恶意软件进行分类和检测的框架;H.Hashemi[8]等人使用K近邻和支持向量机作为机器学习分类器来检测位置恶意软件;Y.Ye[9]等人构建了一个深度学习架构来检测智能恶意软件;N.McLaughlin[10]等人采用了深度卷积神经网络来识别恶意软件;H.J.Zhu[11]等人定义了一种新的机器学习算法,叫做旋转森林,以用来识别恶意软件。
网络入侵检测:
拒绝服务(DoS):这种攻击常发生在由于攻击者的行动,授权用户反而无法访问信息、设备或者其他网络资源的时候。Sabah Alzahrani[12]等人提出了一种基于异常的分布式人工神经网络和基于特征的方法,应用两种不同方法进行防御。
入侵检测系统(IDS):这个系统可以保护计算机系统免受异常事件或者违规威胁。由于人工智能技术的灵活性和快速学习的能力,适合于应用到开发入侵检测系统中来。W.L. Al-Yaseen[13]等人将支持向量机以及K-means算法的新版本结合起来,创建了一个适用于IDS的模型;A.H. Hamamoto[14]等人将遗传算法和模糊逻辑用于网络入侵的检测,用来预测指定时间间隔内的网络流量。
网络钓鱼和垃圾邮件检测:
网络钓鱼攻击:这种攻击试图窃取用户身份。例如常听说的暴力攻击以及字典攻击。针对这种攻击,S.Smadi[15]等人介绍了一种网络钓鱼检测系统,利用了神经网络和强化学习的方法检测钓鱼邮件;F.Feng[16]等人采用蒙特卡洛算法和风险最小化方法,使用神经网络识别调用网站。
垃圾邮件检测:指的是未经允许的电子邮件,可能包含不适当的内容并可能引发安全问题。Feng等人结合支持向量机和朴素贝叶斯算法来过滤垃圾邮件。
05
总 结
参考文献
[1] Jean-CharlesPomerol, “Artificial intelligence and human decision making,”. European Journal of Operation Research, March 1997, DOI: 10.1016/S0377-2217(96)00378-5 · Source: CiteSeer.
[2] Simon, H.A., “Reason in Human Affairs,”, Basil Blackwell, Oxford, 1983.
[3] Tom M. Mitchel, “Machine Learning,”. McGraw-Hill Science/Engineering/Math; March 1997, ISBN: 0070428077.
[4] Arulkumaran K, Deisenroth MP, Brundage M, et al., “Deep reinforcement learning: a brief survey.,”. IEEE SignalProcess Mag, 34(6):26-38, 2017. https://doi.org/10.1109/MSP.2017. 2743240.
[5] Arthur L. Samuel, “Some Studies in Machine Learning Using the Game of Checkers,”. IBM Journal, November 1967.
[6] Benoit Morel, “Artificial Intelligence a Key to the Future of Cybersecurity,”. In Proceeding of Conference AISec’11, October 2011, Chicago, Illinois, USA.
[7] Chowdhury, M., Rahman, A., Islam, R., “Malware analysis and detection using data mining and machine learning classification,”. In Proceedings of the International Conference on Applications and Techniques in Cyber Security and Intelligence, Ningbo, China, 16–18 June 2017; pp. 266-274.
[8] H. Hashemi, A. Azmoodeh, A. Hamzeh, S. Hashemi, “Graph embedding as a new approach for unknown malware detection,”. J. Comput. Virol. Hacking Tech. 2017, 13, 153-166.
[9] Y. Ye, L. Chen, S. Hou, W. Hardy, X. Li, “DeepAM: A heterogenous deep learning framework for intelligent malware detection,”. Knowledge Information System. 2018, 54, 265-285.
[10] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller, S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupe, “Deep android malware detection,”. In Proc of the Seventh ACM on Conference on Data and application Security and Privacy, Scottsdale, AZ, USA, 22-24 March 2017, pp.301-308.
[11] H.J. Zhu, Z.H. You, Z.X. Zhu, W.L. Shi, X. Chen, L. Cheng, “Effective and robust detection of android malware using static analysis along with rotation forest model,”. Neurocomputing 2018, 272, 638-646.
[12] Sabah Alzahrani, Liang Hong, “Detection of Distributed Denial of Service (DDoS) attacks Using Artificial Intelligence on Cloud,”. In Proceedings of 2018 IEEE Conference, San Francisco, CA, USA, July 2018.
[13] W.L. Al-Yaseen, Z.A. Othman, M.Z.A. Nazri, “Multi-level hybrid support vector machine and extreme learning machine based on modified K-means for intrusion detection system,”. Expert Syst. Appl. 2017, 67, 296-303.
[14] A.H. Hamamoto, L.F. Carvalho, L.D.H. Sampaio, T. Abrao, M.L. Proenca, “Network anomaly detection system using genetic algorithm and fuzzy logic,”. Expert System Application. 2018, 92, 390-402.
[15] S. Smadi, N. Aslam, L. Zhang, “Detection of online phishing email using dynamic evolving neural network based on reinforcement learning,”. Decision Support System, 2018, 107, 88-102.
[16] F. Feng, Q. Zhou, Z. Shen, X. Yang, L. Han, J. Wang, “The application of a novel neural network in the detection of phishing websites,” Intelligent Humanizing Computation, 2018, 1-15.
中国保密协会
科学技术分会
长按扫码关注我们
作者:王涛 网安学院
责编:郝璐萌
2022精彩文章TOP5回顾
近期精彩文章回顾