其他
高考数学:谈谈应用均值不等式的八种拼凑技巧
【来源】高中数学解题研究会(许兴华数学/选编)
欢迎大家给公众号“许兴华数学”投稿!
利用均值不等式求最值或证明不等式是高中数学的一个重点。在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。
均值不等式等号成立条件具有潜在的运用功能。以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。笔者把运用均值不等式的拼凑方法概括为八类。
1
拼凑定和
通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。
2
拼凑定积
通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点,配项凑定积,创造运用均值不等式的条件。
3
拼凑常数降幂
4
拼凑常数升幂
5
约分配凑
通过“1”变换或添项进行拼凑,使分母能约去或分子能降次。
6
引入参数拼凑
某些复杂的问题难以观察出匹配的系数,但利用“等”与“定”的条件,建立方程组,解地待定系数,可开辟解题捷径。
7
引入对偶式拼凑
根据已知不等式的结构,给不等式的一端匹配一个与之对偶的式子,然后一起参与运算,创造运用均值不等式的条件。
8
确立主元拼凑
在解答多元问题时,如果不分主次来研究,问题很难解决。如果根据具体条件和解题需要,确立主元,减少变元个数,恰当拼凑,可创造性地使用均值不等式。
综上可见,许多貌似繁难的最值问题或不等式证明问题,运用均值不等式等号成立条件,恰当拼凑,可创造性地使用均值不等式,轻松获解。
这种运用等号成立条件的拼凑方法,既开拓了学生的思路,又活跃了学生的思维,培养了学生的数学能力。